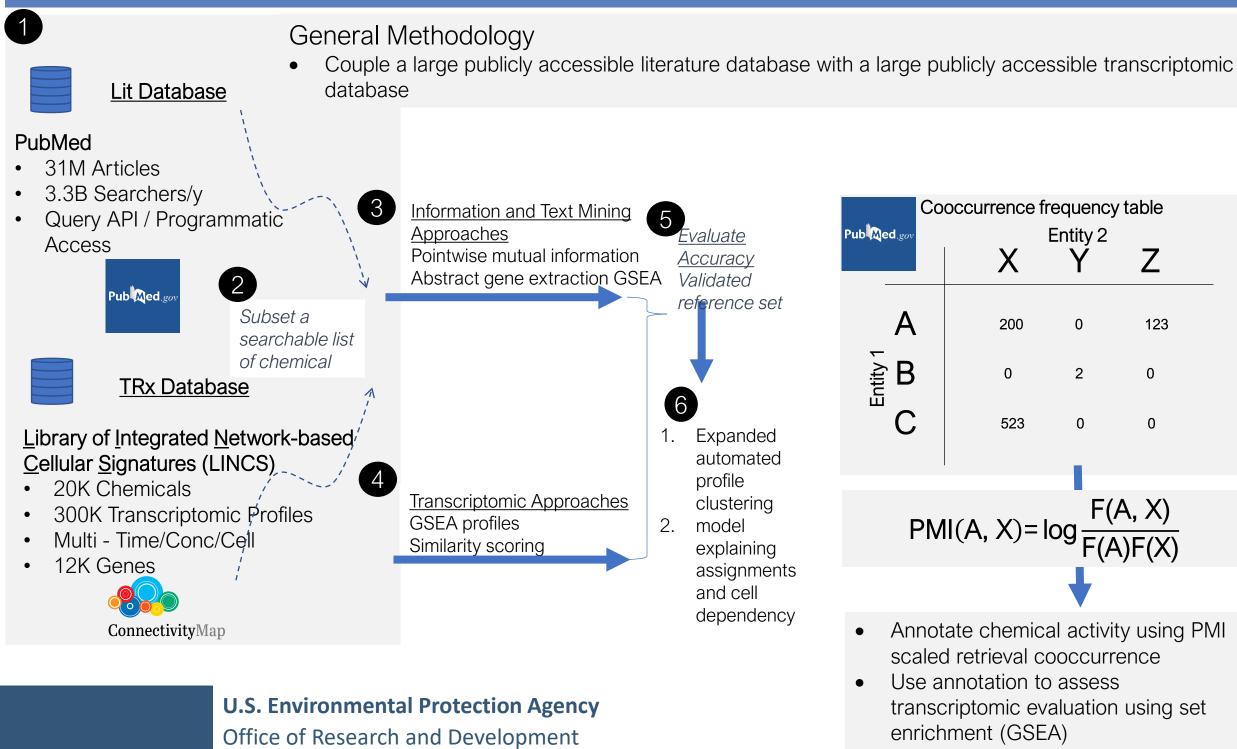
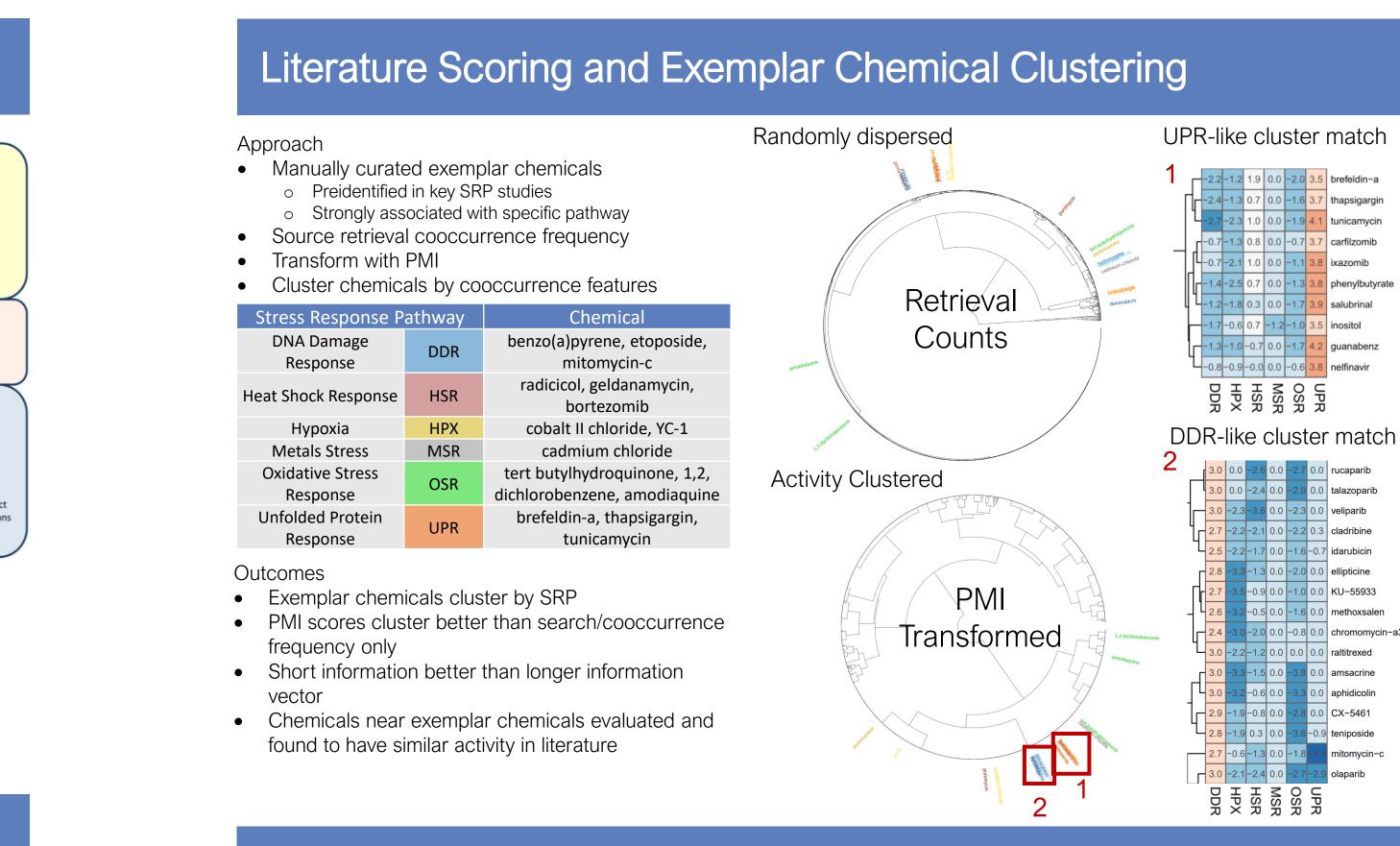

Literature-mining and Transcriptomic Stress Response Annotation of a Large Chemical Database Bryant Chambers¹, Laura Taylor¹, Nancy Baker², Richard Judson¹, and Imran Shah¹ ¹Center for Computational Toxicology and Exposure, US EPA; ²Leidos

www.epa.gov

Background and Hypothesis

Rationale

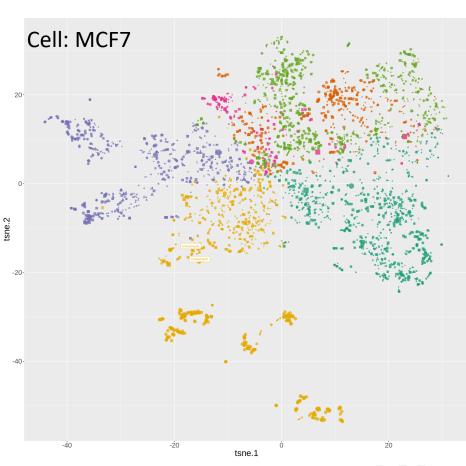

- Many environmental chemicals act via non-specific mechanisms
- Do not activate molecular initiating events (MIEs) Cannot be related to adverse outcomes (Ankley 2010)
- Overlap between responses obscure discrete reference chemical assignment.
- Currently no SRP knowledge base exists for training SRP classifiers
- Literature and information retrieval approaches can support SRP annotation
- Existing knowledge bases are:
 - Limited by predefined conceptual space with
 - insufficient SRP annotation
 - Clouded by uneven coverage of SRP context Hand curated requiring extensive person investment



Hypotheses

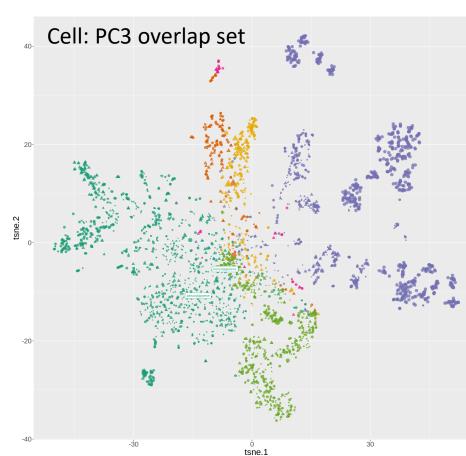
- Information retrieval based cooccurrence coupled to statistic (Pointwise mutual information; PMI) can support SRP annotation Scaled representation
 - Unrestricted conceptual space supporting free text
- Coupling transcriptomic analysis to a well annotated data can improve signature design and inform cell line dependent effects.

Linking a literature database to a transcriptomic database



Predicted chemical activity transcriptomic clustering

Approach


- Chemical TRx profiles annotated with PMI predicted
- All chemical > PMI 1-1.5 selected
- Two cell types with most abundant profiles selected
- t-sne clustering of transcriptomes

chemical.stress.assignment a DDR a HSR a OSR dose a 25 a 50 a 75 a 100 time • 24 • 3 • 6 a HPX a MTL a UPR

Outcome

- Profiles generally cluster by PMI assignment
- MCF7 HPX present but absent in PC3 • Potential role of ERS1 increase in basal increase of HPX
- genes • OSR and DDR cluster together more than protein misfolding SRPs
- UPR and HSR overlap

chemical.stress.assignment a DDR a HSR a OSR dose a 25 a 50 a 75 a 100 time • 24 • 6 a HPX a MTL a UPR

The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Bryant A. Chambers I chambers.bryant@epa.gov 919.541.4268

- Lower doses are more generally shared between all SRPs

Accuracy against a hand curated validation set

Approach

- Curated 93 chemical set
 - Seeded using literature search results
- Hand validated:
 - 5 reference per chemical
 - 2 reviewers per chemical
 - 68 surviving after review
 - Presence of positives and negatives in set
 - Pathway activating
 - Pathway protective (e.g., chelators)
- Activity scored by PMI annotation and GSEA
- Accuracy evaluated by matching assignments within top n ranked scores
 - GSEA scores aggregated as median across
- complete set

Outcome

- Good matching between PMI and Validated Annotation
 - 70% top ranked, 80% by top two
- Poor matching between Signatures and Validated Annotation
 - 35% top ranked

Role of cell line in GSEA activity assignment Approach

- Aggregate concertation and time by finding 5th, 50th, and 95th percentile scores for each chemical and cell type
- Evaluate performance as accuracy and find AUROC as each cell model and signature

Outcome

- Overall accuracy improves when considering cell type
- Specific cell models are more accurate for a given SRP
- PC3 is generally the best model Adaquate in PC3, MCF7 and HEPG2

Conclusions and future directions

Key Conclusions

- Information retrieval approaches adequately support activity annotation
- Data cluster better by PMI transformed data
- Transcriptomic profiles show a base level of clustering using automated assignment
- GSEA scoring is cell type dependent
- Transcriptomic profile clustering indicate some native profile similarity that is lost in signatures

Future Directions

- Boot strap signature development with fully automated PMI assignment
- Expression of stress response systems is partially dependent on cell and tissue type; as such, a deeper understanding of tissue dependency must be achieved.

PMI Activity Scoring

SRP	Top Ranked	Top 2	Тор З
DDR	100%	100%	100%
HSR	63%	82%	90%
НРХ	100%	100%	100%
MSR	0%	0%	0%
OSR	56%	100%	100%
UPR	100%	100%	100%

Cell independent GSEA Activity Scoring

SRP	Top Ranked	Top 2	Тор З
DDR	7%	7%	14%
HSR	64%	82%	90%
НРХ	0%	0%	0%
OSR	0%	17%	33%
UPR	100%	100%	100%

Cell and scoring dependent GSEA Activity

SRP	Top Ranked	Top 2	Тор З
DDR – PC3	43%	71%	90%
HSR – NPC	38%	38%	50%
HPX - HEPG2	0%	100%	100%
OSR - PC3 p5	50%	100%	100%
UPR – HCC515 50p	25%	50%	50%

References Ankley (2010) Environmental Toxicology and Chemistry, 29: 730-741 Simmons (2009) Toxicological Sciences 111(2,) 202-225 Judson (2016) Toxicological Sciences 152(2):323-339 Shah (2016) Environ Health Perspect. 124(7):910-9 Thomas (2019) Toxicological Sciences 169(2):317-332 Stathias (2020) Nuc. Acids Res. 48(D1):431-439