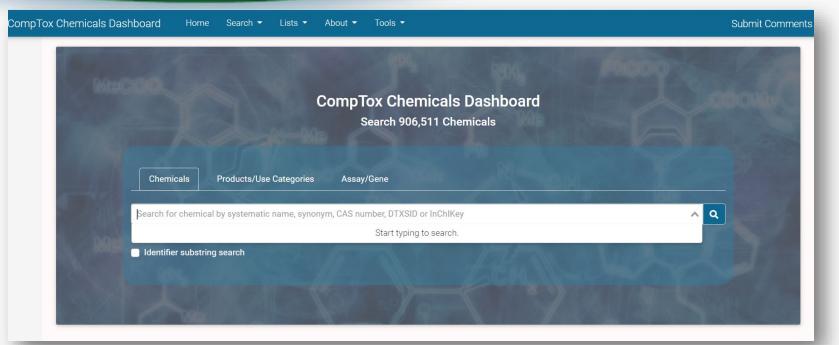


Structure standardization approaches for mass spectrometry data integration

Antony J. Williams¹, Charles Lowe¹, Gabriel Sinclair², Todd Martin¹ and Valery Tkachenko³


1 Center for Computational Toxicology & Exposure, U.S. Environmental Protection Agency, 2 ORAU Student Services Contractor 3 Science Data Experts

August 2022: ACS Chicago

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

CompTox Chemicals Dashboard

- Structure standardization is essential for the Dashboard
- Standardization underpins many pieces of functionality
- "MS-Ready" structures are the foundation of our support for mass spectrometry

Different flavors of standardization

- We have standardization approaches at the time of chemical registration
- Our ChemReg system is based on ChemAxon tools so we have SMILES standardization and both Jchem InChIs and StdInChIs are generated
- But we also add "QSAR- and MS-Ready" structures based on OPERA

Originally developed by Kamel Mansouri while he was postdoc'ing at EPA

OPERA models for predicting physicochemical properties and environmental fate endpoints

Kamel Mansouri [⊡], Chris M. Grulke, Richard S. Judson & Antony J. Williams

Journal of Cheminformatics 10, Article number: 10 (2018) Cite this article

13k Accesses | 156 Citations | 25 Altmetric | Metrics

Research article Open Access Published: 18 September 2019

Open-source QSAR models for pKa prediction using multiple machine learning approaches

<u>Kamel Mansouri</u> ^[2], <u>Neal F. Cariello</u>, <u>Alexandru Korotcov</u>, <u>Valery Tkachenko</u>, <u>Chris M. Grulke</u>, <u>Catherine S.</u> <u>Sprankle</u>, <u>David Allen</u>, <u>Warren M. Casey</u>, <u>Nicole C. Kleinstreuer</u> & <u>Antony J. Williams</u>

Journal of Cheminformatics 11, Article number: 60 (2019) Cite this article

21k Accesses | 42 Citations | 20 Altmetric | Metrics

OPERA has standardization https://github.com/kmansouri/OPERA

 OPERA is open source and under maintenance and expansion with new data and models

kmansouri / OPERA Public	ifications & Fork 31 🛱 Star 54 💌		
<> Code ③ Issues 6 \$ Pull rec	uests 🕑 Actions 🖽 Projects 😲 Secu	rity 🗠 Insights	
ੇ ⁹ master → 🐉 1 branch 🕟 34 ta	gs	Go to file Code 🗸	About
Mansouri v2.8.4		6db6c16 on Jun 17 🗿 165 commits	Free and open-source application (command line and GUI) providing QSAR
OPERA_Source_code	v2.8.4	2 months ago	models predictions as well as applicability domain and accuracy assessment for
C Icon.png	OPERA 1.2 icon	5 years ago	physicochemical properties, environmental fate and toxicological
Install_guide.pdf	v2.7-beta1	14 months ago	endpoints.
	Initial commit	6 years ago	===========>Download the latest compiled version from the
Logo.png	Added logo and icon	6 years ago	"releases" tab and run the executable
OPERA1.5_Source_code.zip	MATLAB source code for OPERA1.5	4 years ago	installer.
OPERA2.0_Source_code.zip	MATLAB source code for OPERA 2.0	4 years ago	
OPERA_Data.zip	v2.8.1	5 months ago	☆ 54 stars
OPERA_models_2.8.xlsx	v2.8.1	5 months ago	8 watching

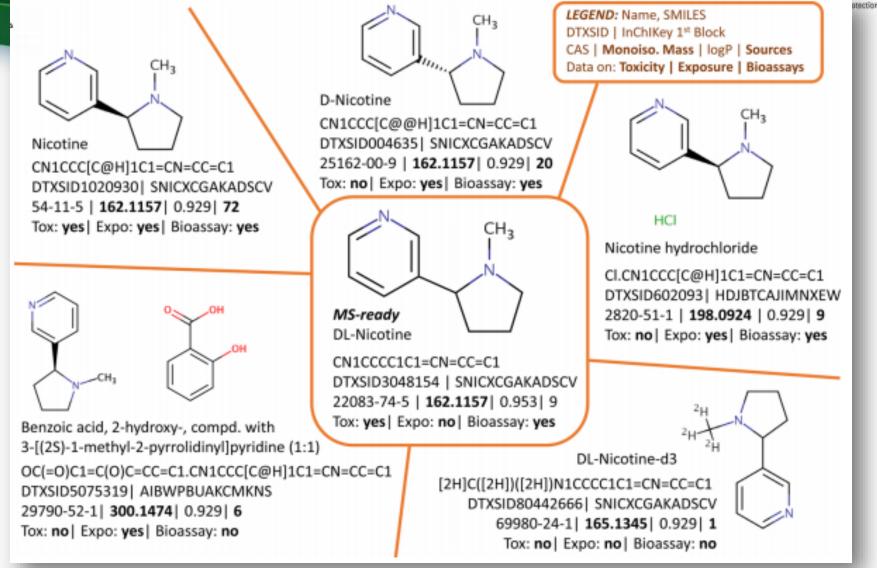
 QSAR-Ready standardization is to support QSAR modeling – i.e., remove stereocenters, desalting, ignore multicomponent chemicals

 MS-Ready is a derivative work of QSAR-Ready and has different rules for processing chemicals ESPECIALLY for multi-component chemicals and the handling of certain organometallics

"MS-ready" structures

McEachran et al. J Cheminform (2018) 10:45 https://doi.org/10.1186/s13321-018-0299-2 Journal of Cheminformatics

METHODOLOGY



Open Access

"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

Andrew D. McEachran^{1,2*}, Kamel Mansouri^{1,2,3}, Chris Grulke², Emma L. Schymanski⁴, Christoph Ruttkies⁵ and Antony J. Williams^{2*}

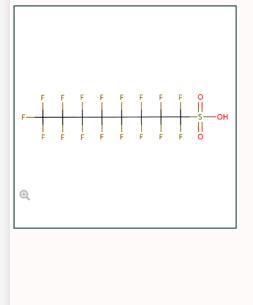
Open Science for Identifying "Known Unknown" Chemicals Emma L. Schymanski*¹⁰ and Antony J. Williams^{*†0}

Viewpoint

Overview of MS-Ready Structures

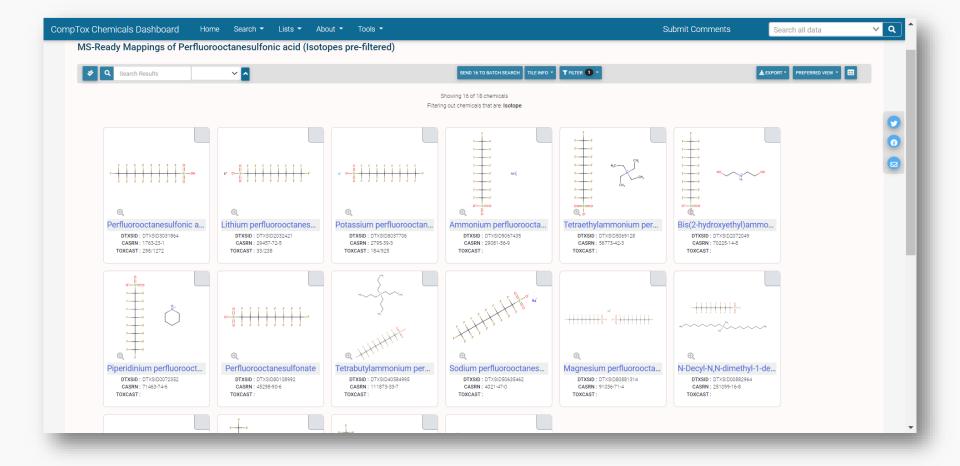
- All structure-based chemical substances are algorithmically processed to
 - Split multicomponent chemicals into individual structures
 - Desalt and neutralize individual structures
 - Remove stereochemical bonds from all chemicals
- MS-Ready structures are then mapped to original substances to provide a path between chemicals detected by mass spectrometry to original substances

MS-Ready Mappings from Details Page



Perfluorooctanesulfonic acid 1763-23-1 | DTXSID3031864

Searched by DTXSID3031864.


Chemical Details

Wikipedia	~
Quality Control Notes	~
Intrinsic Properties	~
Structural Identifiers	~
Linked Substances	^
Same Connectivity: 4 records (based on first layer of InChI)	
Mixtures, Components and Isotopomers: DTXCID1011864: 18 records;	
Similar Compounds: 127 records (based on Tanimoto coefficient >0.8)	
Presence in Lists	•
Record Information	~

MS-Ready Mappings Set of substances for "PFOS"

- Mass spectrometry detects single components and is non-stereospecific so all multi-component forms of PFOS are "equivalent" for detection
- Not all forms of PFOS are equivalent in commerce, or availability of data, literature, and standards
- Mass/formula searches find the component.MS-Ready mapping finds everything with the component

MS-Ready Structures for **Formula Search**

Molecular Formula Search 🕕

💿 MS Ready Formula 🚯 🔿 Exact Formula 🚯

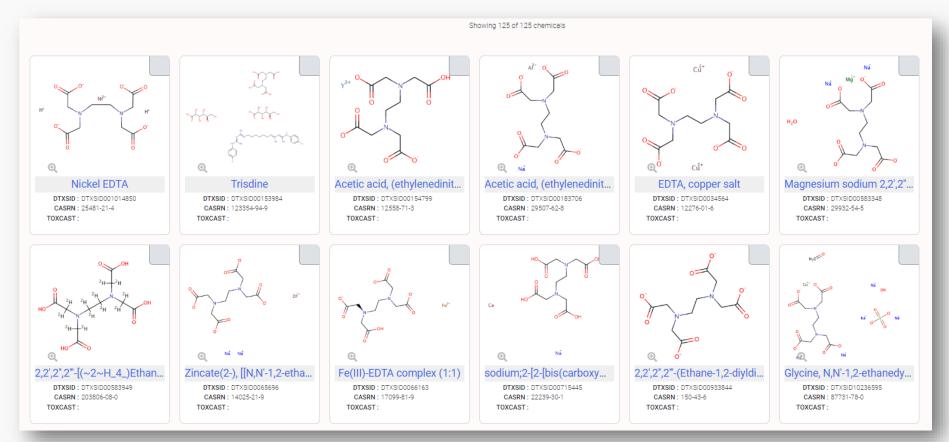
Formula

Please use the format of the following example: C6H8O2 or C6H(8-10)O(0-2)

Search Q

MS-Ready Mappings

• EXACT Formula: C10H16N2O8: 4 Hits


		Advanced Search			
Mass Search	Molecular Formula Search Genera	te Molecular Formula(e)			
	Molecular Formula Search 🚺				
	C10H16N208				
	○ MS Ready Formula ^① ○ Exact F	ormula 🟮			
		Filtering or	Showing 4 of 4 chemicals ut chemicals that are: Multicomponent		
$e^{O_{H}}$			$H_{0} = H_{0} = H_{0$		
Ethylenediamine-N,N'-disu DTXSID : DTXSID1051852 CASRN : 20846-91-7 TOXCAST :	Dimethyl 2,7-dinitrooctane DTXSID : DTXSID20498864 CASRN : 67404-09-5 TOXCAST :	Ethylenediaminetetraaceti DTXSID : DTXSID6022977 CASRN : 60-00-4 TOXCAST : 12/238	2,2'-[Ethane-1,2-diylbis(az DTXSID : DTXSID80860260 CASRN : 186459-75-6 TOXCAST :		

13

MS-Ready Mappings

- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 125 Chemicals

- 125 chemicals returned in total
 - 9 of the 125 are **single component** chemicals
 - 4 of the 125 are isotope-labeled
- Multiple components, stereo, isotopes and charge all mapped through MS-Ready

Batch Searching mass and formula

Batch Searching

• Singleton searches are useful but we work with **thousands** of masses and formulae!

- Typical questions
 - What is the list of chemicals for the formula $C_x H_y O_z$
 - What is the list of chemicals for a mass +/- error
 - Can I get chemical lists in Excel files? In SDF files?
 - Can I include properties in the download file?

Batch Searching Formula/Mass

CHOOSE EXPORT OPTIONS

or

Batch Search Select Input Type(s) 2 Enter Identifiers to Search 5 🗸 ppm Substance Identifiers (Please enter one identifier per line and limit the number of identifiers to 10,000 or less) Chemical Name 200.083730 CASRN 352.146330 InChlKey 318.089209 DSSTox Substance ID 382.287180 DSSTox Compound ID 58499 This search is based on what we refer to as "Mass Spec (MS) InChIKey Skeleton 57082 Ready" structures. All chemicals within the database are treated MS-Ready Formula(e) in a manner such that all are desalted, mixtures are separated, 15030 Exact Formula(e) and stereochemistry is removed as Mass Spectrometry detects 96651 Monoisotopic Mass the major components of a salt or mixture and is insensitive to

stereochemistry. As an example, a search for the monoisotopic

mass of phenol will return phenol, sodium phenolate and calcium phenoxide. See the publication for more details: https://doi.org/10.1186/s13321-018-0299-2.

Select Input Type(s)	2 Enter Identifiers to Search
Substance Identifiers	(Please enter one identifier per line and limit the number of identifiers to 10,000 or less)
 Chemical Name CASRN InChIKey DSSTox Substance ID DSSTox Compound ID InChIKey Skeleton MS-Ready Formula(e) Exact Formula(e) Monoisotopic Mass 	C14H22N2O3 C18H34N2O6S C10H12N2O C14H18N4O3 C12H11N7 C8H9NO2 3 ● DISPLAY ALL CHEMICALS OF ● CHOOSE EXPORT OPTIONS

Searching batches using MS-Ready Formula (or mass) searching

4	A	В	С	D	E	F	G
1	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	DATA SOURCES
2	C14H22N2O3	DTXSID2022628		Atenolol	C14H22N2O3		46
3	C14H22N2O3	DTXSID0021179	6673-35-4	Practolol	C14H22N2O3		32
4	C14H22N2O3	DTXSID4048854	841-73-6	Bucolome	C14H22N2O3		20
5	C14H22N2O3	DTXSID1045407	13171-25-0	Trimetazidine dihydrochloride	C14H24Cl2N2O3		19
6		DTXSID0045753	56715-13-0	R-(+)-Atenolol	C14H22N2O3		19
7	C14H22N2O3	DTXSID2048531	5011-34-7	Trimetazidine	C14H22N2O3		14
8	C14H22N2O3	DTXSID10239405	93379-54-5	Esatenolol	C14H22N2O3		12
9	C14H22N2O3	DTXSID50200634	52662-27-8	N-(2-Diethylaminoethyl)-2-(4-hydroxyphenoxy)acetamide	C14H22N2O3		7
	C14H22N2O3	DTXSID4020111			C14H23CIN2O3		6
11	C14H22N2O3	DTXSID1068693	51963-82-7	Benzenamine, 2,5-diethoxy-4-(4-morpholinyl)-	C14H22N2O3		5
12	C18H34N2O6S	DTXSID3023215	154-21-2	Lincomycin	C18H34N2O6S		35
13	C18H34N2O6S	DTXSID7047803	859-18-7	Lincomycin hydrochloride			22
14	C18H34N2O6S	DTXSID20849438	1398534-62-7	PUBCHEM_71432748	C18H35CIN2O6S		1
15	C10H12N2O	DTXSID1047576	486-56-6	Cotinine	C10H12N2O		40
16	C10H12N2O	DTXSID8075330	50-67-9	Serotonin	C10H12N2O		22
17	C10H12N2O	DTXSID8044412	2654-57-1	4-Methyl-1-phenylpyrazolidin-3-one	C10H12N2O		18
18	C10H12N2O	DTXSID80165186	153-98-0	Serotonin hydrochloride	C10H13CIN2O		11
19	C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine	C10H12N2O	176.094963014	10
20	C10H12N2O	DTXSID10196105	443-31-2	6-Hydroxytryptamine	C10H12N2O	176.094963014	9
21	C10H12N2O	DTXSID90185693	31822-84-1	1,4,5,6-Tetrahydro-5-phenoxypyrimidine	C10H12N2O	176.094963014	7
22	C10H12N2O	DTXSID40178777	2403-66-9	2-Benzimidazolepropanol	C10H12N2O		7
23	C10H12N2O	DTXSID80157026	13140-86-8	N-Cyclopropyl-N'-phenylurea	C10H12N2O		6
24	C10H12N2O	DTXSID30205607	570-14-9	4-Hydroxytryptamine	C10H12N2O		6
25	C14H18N4O3	DTXSID5023900	17804-35-2	Benomyl	C14H18N4O3		68
26	C14H18N4O3	DTXSID3023712	738-70-5	Trimethoprim	C14H18N4O3		51
27	C14H18N4O3	DTXSID40209671			C14H19CIN4O3		8
28	C14H18N4O3	DTXSID70204210		Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,	C14H18N4O3		5
29	C14H18N4O3	DTXSID20152671		6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina			4
30	C14H18N4O3	DTXSID30213742	63931-79-3	1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-	C14H18N4O3		3
31	C14H18N4O3	DTXSID30219608		2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)			3
32	C14H18N4O3	DTXSID20241155	94232-27-6	L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl	C18H25N5O7		3
33	C14H18N4O3	DTXSID80241156		L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny		437.191048229	3
34	C14H18N4O3	DTXSID20143781	101204-93-7	1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam	C14H18N4O3		3
35	C12H11N7	DTXSID6021373	396-01-0	Triamterene	C12H11N7		52
36	C12H11N7	DTXSID00204465			C12H11N7		7
37	C12H11N7	DTXSID5064621		Benzenamine, 4-azido-N-(4-azidophenyl)-	C12H9N7		4
38	C12H11N7	DTXSID00848025		Sulfuric acid6-phenylpteridine-2,4,7-triamine (1/1)	C12H13N7O4S	351.074973101	1
39	C12H11N7	DTXSID50575293			C12H11N7	253.107593382	1
40	C8H9NO2	DTXSID2020006	103-90-2	Acetaminophen	C8H9NO2		75
11	C8H0NO2	DTYSID6025567		Mothyl 2 aminohonzoato	C8H0NO2	161 063328534	50

Building a New Standardizer

Standardization rules are imperfect

- We have found multiple examples of where standardization rules need to be optimized and tweaked – not just for MS but also for chemical registration
 - Tautomer handling
 - Salt handling especially C-Metal bonds
 - Multi-component systems removal of solvents

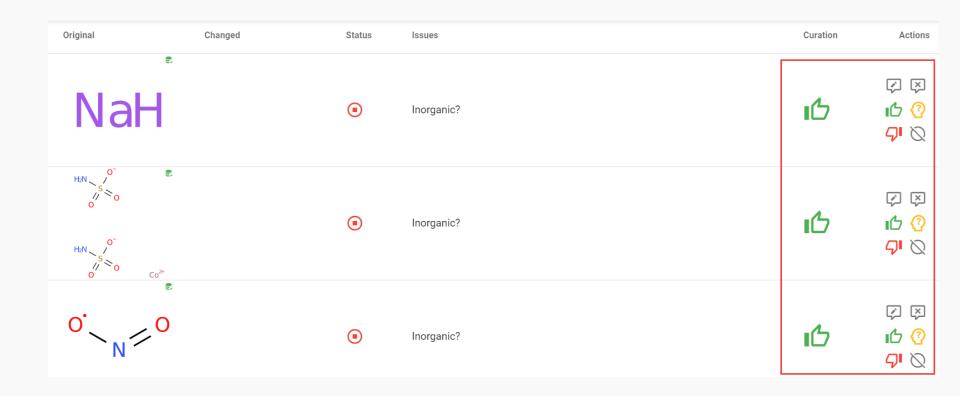
WERT PROTOCOLOGICAL

Proof-of-concept standardizer

- The EPA Cheminformatics Modules are proof-of-concept tools to test approaches
- Five modules at present
 - Hazard comparison module
 - Structure/substructure/similarity searching
 - Batch QSAR prediction for property and toxicity
 - Application of "ToxPrint chemotypes"
 - Structure Alerts

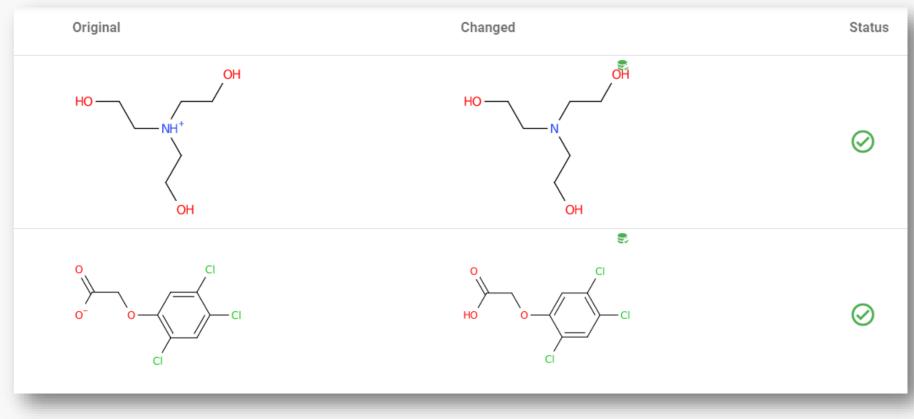
The Standardizer PoC Module

https://www.epa.gov/chemical-research/cheminformatics

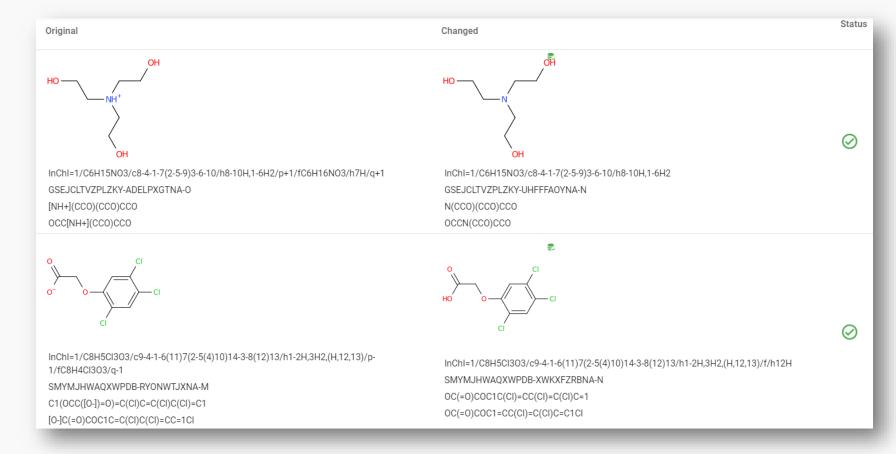


Hazaro	d Comparison Dashboar JAT, build: 2021-10-26 21:27:37 UT			😽 HAZARD 📀 ALERTS 🖩 PREDIC	CT 🕄 SEARCH 🕼 STA	NDARDIZE 👼 TOXPRINTS 主
\uparrow	Search in any field	<u> </u>			Curate Deta	ils D D 🖸
#	ID		Original	Changed	Status	Issues
	0	Ē	OF OH OH OH		\odot	
	1				۲	Inorganic?
	2	E	ly	* *******	\oslash	
	3		ۼؠۣڮؾۑؙۑؖڮڮ	- the first of the	\oslash	
				8.		•

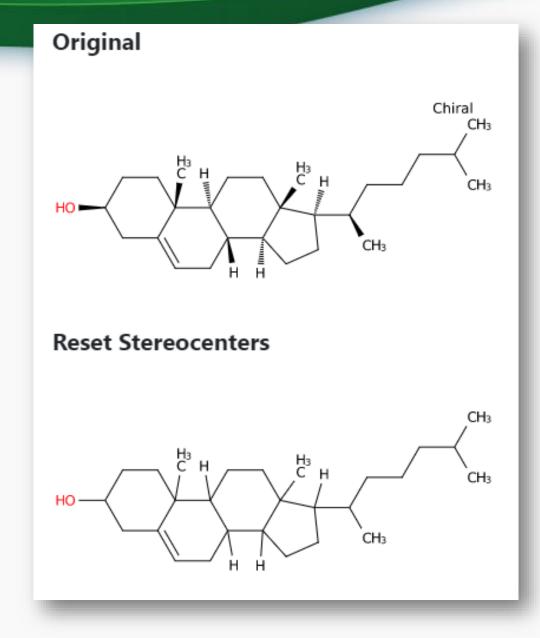
Standardizer


Inorganic detection PLUS curation interface

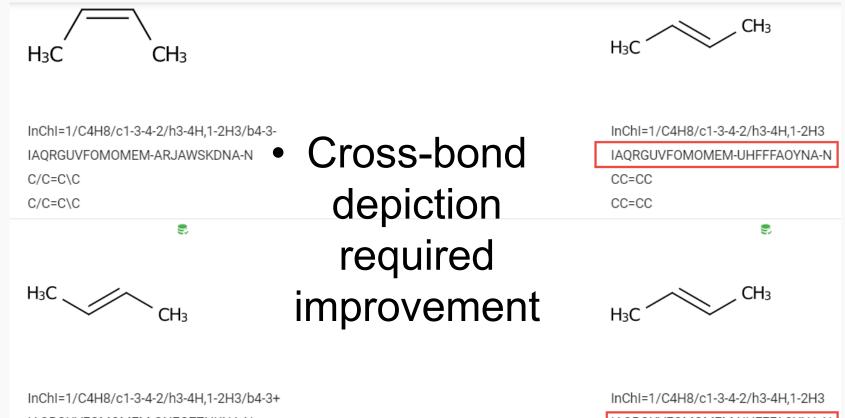
Standardizer – MS and QSAR-Ready


Neutralization

Standardizer – MS and QSAR-Ready



Neutralization


Stereo Removal

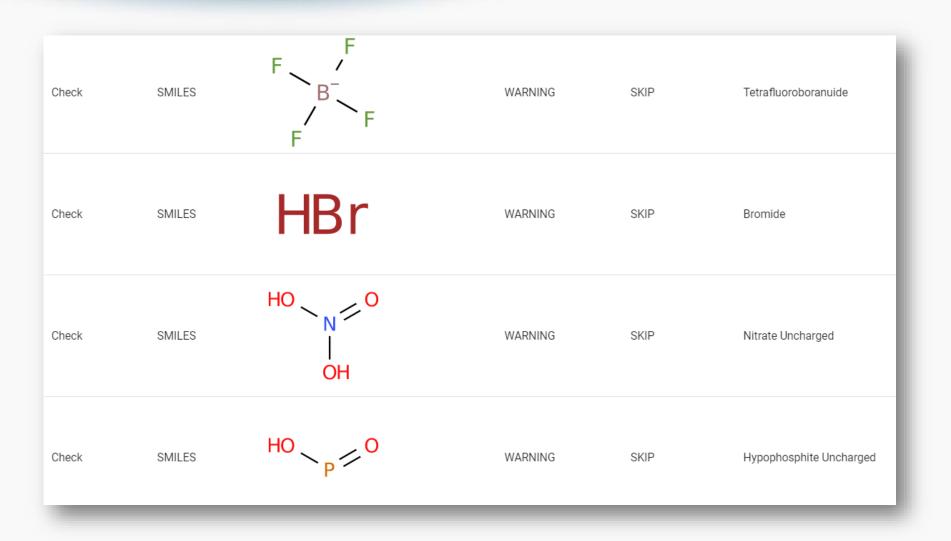
Stereo Removal

IAQRGUVFOMOMEM-ONEGZZNKNA-N

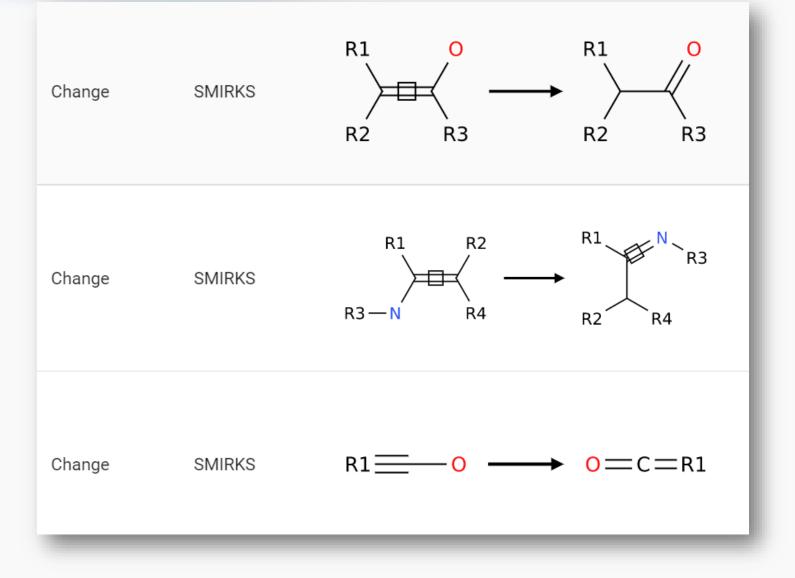
C/C=C/C

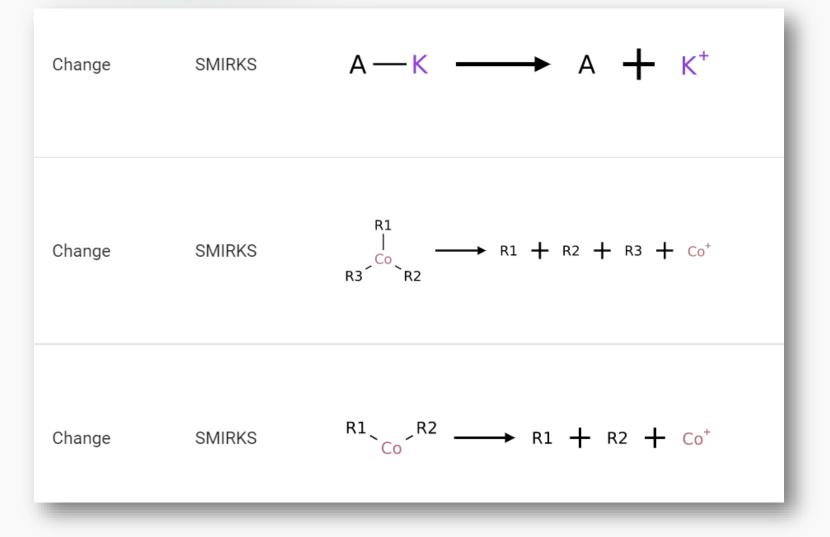
C/C=C/C

InChI=1/C4H8/c1-3-4-2/h3-4H,1-2H3 IAQRGUVFOMOMEM-UHFFFAOYNA-N CC=CC CC=CC

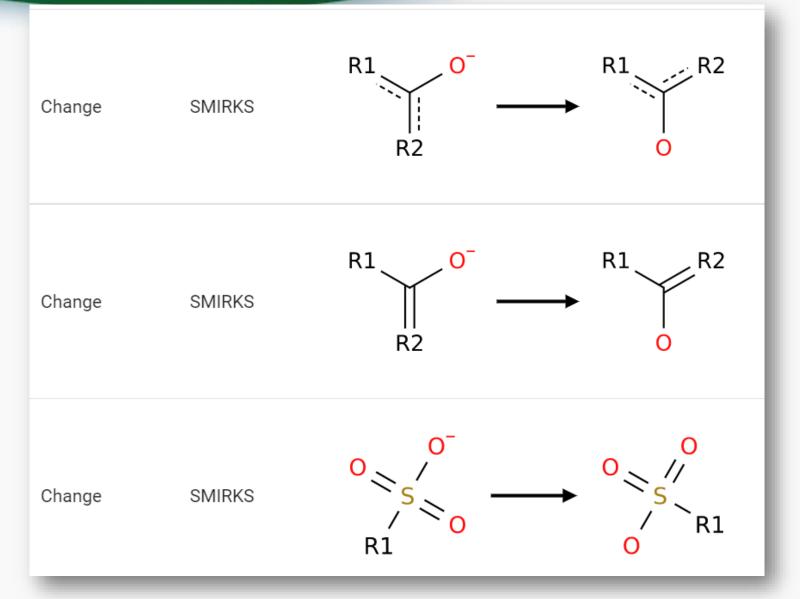

Rules can be defined

Туре	Name	Frozen	Title	Description	Records #
LibraryGroup	mesomers		Mesomeric transformations		13
LibraryGroup	tautomers		Tautomers standardization		7
LibraryGroup	neutralize		Neutralize and de-radicalize		59
LibraryGroup	break-salts		Break salts		11
LibraryGroup	ms-ready-exclusions		MS-Ready exclusions		32
LibraryGroup	qsar-ready-exclusions		QSAR-Ready exclusions		189
LibraryGroup	standard-checks		Standard checks		11
Workflow	ms-ready		MS-Ready		13
Workflow	qsar-ready		QSAR-Ready		14
LibraryGroup	markush-checks		Markush checks		7


MS-Ready Exclusions


Tautomers

Break Salts

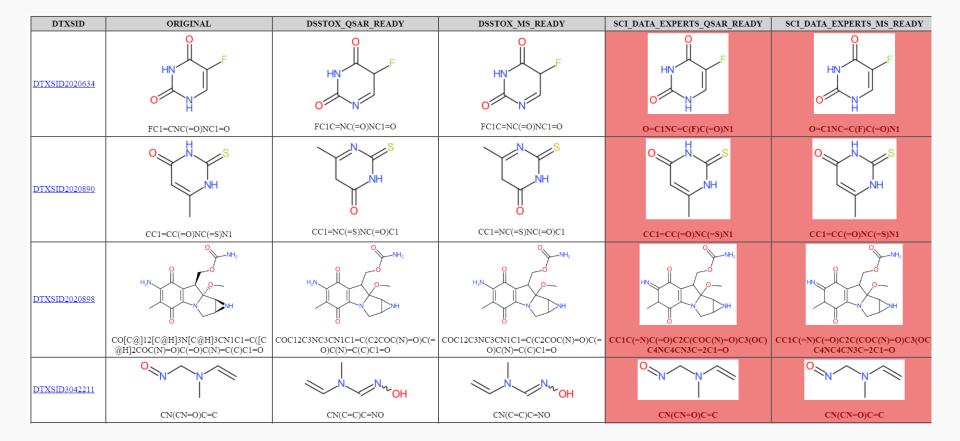


32

Neutralize and Deradicalize

Markush structure handling

Class Ty	уре	Value	Severity	Action	Title
Check M	IETHOD	hasQuery	ERROR	SKIP	Has Query?
Check M	1ETHOD	hasPseudoatom	ERROR	SKIP	Pseudo-atom?
Check M	1ETHOD	hasGenericSGroups	ERROR	SKIP	Generic SGroups?
Check M	1ETHOD	hasSuperatom	ERROR	SKIP	Super-atom?
Check M	1ETHOD	hasRepeatingUnits	ERROR	SKIP	Repeating Units?
Check M	IETHOD	hasMultipleGroups	ERROR	SKIP	Multiple Groups?
Check M	1ETHOD	hasRGroups	ERROR	SKIP	R-Groups?



 Validation study comparing OPERA with new standardizer for both QSAR and MS-Ready

DTXSID	ORIGINAL	DSSTOX_QSAR_READY	DSSTOX_MS_READY	SCI_DATA_EXPERTS_QSAR_READY	SCI_DATA_EXPERTS_MS_READY
DTXSID7020475					
	CCCC1=CC2=C(OCO2)C=C1	CCCC1=CC2=C(OCO2)C=C1	CCCC1=CC2=C(OCO2)C=C1	CCCC1=CC2OCOC=2C=C1	CCCC1=CC2OCOC=2C=C1
DTXSID7020710					
	N(NC1=CC=CC=C1)C1=CC=CC=C1	N(NC1=CC=CC=C1)C1=CC=CC=C1	N(NC1=CC=CC=C1)C1=CC=CC=C1	C1=CC=CC=C1NNC1C=CC=CC=1	C1=CC=CC=C1NNC1C=CC=CC=1
DTXSID7020716	HO	HO	HO	HO	HO
	OC1=CC=C(O)C=C1	OC1=CC=C(O)C=C1	OC1=CC=C(O)C=C1	OC1C=CC(O)=CC=1	OC1C=CC(O)=CC=1
DTXSID7020766					
	CC(C)OC(=0)NC1=CC=CC=C1	CC(C)OC(=O)NC1=CC=CC=C1	CC(C)OC(=O)NC1=CC=CC=C1	CC(C)OC(=0)NC1C=CC=CC=1	CC(C)OC(=0)NC1C=CC=CC=1

DIFFERENCES are of interest

Develop standard Tautomer Sets

Tautomer Standardization in Chemical Databases: Deriving Business Rules from Quantum Chemistry

Christopher M. Baker*, Nathan J. Kidley, Konstantinos Papachristos, Matthew Hotson, Rob Carson, David Gravestock, Martin Pouliot, Jim Harrison, and Alan Dowling

 Cite this: J. Chem. Inf. Model. 2020, 60, 8, 3781-3791
 Publication Date: July 9, 2020 ∨ https://doi.org/10.1021/acs.jcim.0c00232
 Copyright © 2020 American Chemical Society
 RIGHTS & PERMISSIONS ✓ Subscribed

- Tautomeric standardization will benefit our mappings within the registration system
- Specifically useful for our project to merge and assemble public domain data

MS-Ready Data feed our in silico predictions

scientific data

Explore content ~ About the journal ~ Publish with us ~

nature > scientific data > data descriptors > article

Data Descriptor Open Access Published: 02 August 2019

Linking *in silico* MS/MS spectra with chemistry data to improve identification of unknowns

Andrew D. McEachran 🗠, Ilya Balabin, Tommy Cathey, Thomas R. Transue, Hussein Al-Ghoul, Chris Grulke, Jon R. Sobus & Antony J. Williams 🗠

Scientific Data 6, Article number: 141 (2019) Cite this article

4654 Accesses | 18 Citations | 10 Altmetric | Metrics

An integration hub for MS data

- In order to support our non-targeted analysis we are presently building:
 - The NTA WebApp for data processing and preparation before using our cheminformatics platforms
 - Processing 1.2M substances into MS-Ready structures to generate CFM-ID calculations
 - Assembling public domain data and mapping to our database – MassBank.eu and MassBank.us, SpectraBase
 - Building a cheminformatically enabled methods database

Building a Methods Database

- Simple Vision: I want to find the best method(s) associated with a chemical (class)
- The Approach:
 - Aggregate MS method documents
 - Extract chemistry (mostly CASRN and Names)
 - Map CASRN and Names to structures
 - Search a database by names and synonyms, CASRNs, InChIKeys and ultimately structure
 - "I cannot find my chemical in any method" CHEMINFORMATICS can help....

Where are there methods?

900 method documents

Related Topics: Pesticide Analytical Methods

CONTACT US

Environmental Chemistry Methods (ECM) Index - 0-9

 $\textbf{0-9} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{A} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{B} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{C} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{D} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{E} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{G} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{H} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{I} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{M} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{N} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{O} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{P} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{Q} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{S} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{I} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{V} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{Z} \hspace{0.1cm}$

Analyte(s) by Pesticide	ECM MRID	Matrix	Method Date
<u>1,2,4-triazole</u>	49762553	Water	2/19/13
<u>1,3-dichloropropene & 1,2-dichloropropane</u>	44536511	Soil	3/27/98
<u>1,3-dichloropropene & 1,2-dichloropropane</u>	44536511	Water	3/27/98
<u>1,3-dichloropropene Degradate 3-chloroallyl Alcohol</u>	44536505	Water	12/12/97

Other Methods...

Approved CWA Test Methods: Organic Compounds

Methods approved under Clean Water Act section 304(h) and published at 40 CFR Part 136 EXIT .

August 2017:

- Method 608.3 (replaces Method 608)
- Method 624.1 (replaces Method 624)
- Method 625.1 (replaces Method 625)
- Validation of SPE Products and Associated Procedures with Method 625.1

Note: The drinking water method 525.1 is approved for Clean Water Act use, but it is not approved for Safe Drinking Water Act (SDWA) compliance monitoring.

- <u>More information on approved SDWA methods</u>
- **a** <u>420.1: Phenolics (Spectrophotometric, Manual 4AAP With Distillation) (pdf)</u> (89.78 KB, 1978)
- 🛓 <u>420.4: Determination of Total Recoverable Phenolics by Semi-Automated Colorimetry;</u> <u>Rev. 1.0 (pdf)</u> (191.55 KB, August 1993)
- <u>525.1: Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction</u> <u>and Capillary Column Gas Chromatography/Mass Spectrometry; Rev 2.2 (pdf)</u> (770.69 KB, May 1991)
- 🖹 525.2: Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction

Regulatory Methods

United States Environmental Protection Agency **\$**EP

May 1991

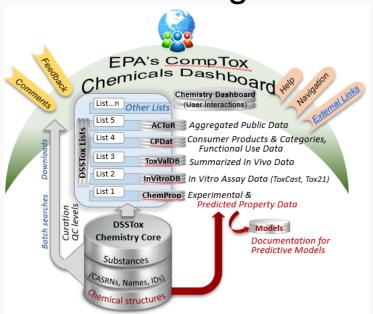
Office of Water

www.epa.gov

Method 525.1, Revision 2.2: **Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry**

Compound	MW^a	CAS No.
Acenaphthylene	152	208-96-8
Alachlor	269	15972-60-8
Aldrin	362	309-00-2
Anthracene	178	120-12-7
Atrazine	215	1912-24-9
Benz[a]anthracene	228	56-55-3
Benzo[b]fluoranthene	252	205-99-2
Benzo[k]fluoranthene	252	207-08-9
Benzo[a]pyrene	252	50-32-8
Benzo[<i>g,h,i</i>]perylene	276	191-24-2
Butylbenzyl phthalate	312	85-68-7
Chlordane Components		
α-Chlordane	406	5103-71-9
γ-Chlordane	406	5103-74-2
trans-Nonachlor	440	39765-80-5
2-Chlorobiphenyl	188	2051-60-7
Chrysene	228	218-01-9
Dibenz[a,h]anthracene	278	53-70-3
Di- <i>n</i> -butyl phthalate	278	84-72-2
2,3-dichlorobiphenyl	222	16605-91-7
Diethyl phthalate	222	84-66-2
Bis(2-ethylhexyl) adipate	222	103-23-1
Bis(2-ethylhexy) phthalate	390	117-81-7
Dimethyl phthalate	194	131-11-3
Endrin	378	72-20-8
Fluorene	166	86-73-7
Heptachlor	370	76-44-8
Heptachlor epoxide	386	1024-57-3
2,2'3,3',4,4',6-Heptachlorobiphenyl	392	52663-71-5

Structure Standardization is KEY


- To pull data together across public MS spectral databases, and build an integrated MS methods database, requires structure standardization and lots of CURATION
- We will unveil the results of this effort at the ACS Spring meeting in 2023
- Watch this space

Conclusion

45


- Dashboard access to data for ~906k chemicals with MS-Ready data facilitating structure identification
- Related metadata facilitates candidate ranking
- We need to continue to tweak and modify MS-Ready through new rules
- PoC standardization module allows us to have multiple rule sets and adjust to research performance

 MS-ready rules and generation service will all be publicly available for people to re-use

Acknowledgements

Kamel Mansouri (he started all of this! We are indebted)
Chris Grulke (6 years of developing the chemical registration schema)

Contact

Antony Williams CCTE, US EPA Office of Research and Development, Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821

Williams et al. J Cheminform (2017) 9:61 DOI 10.1186/s13321-017-0247-6

Journal of Cheminformatics

DATABASE

The CompTox Chemistry Dashboard: a community data resource for environmental chemistry

Antony J. Williams^{1*}, Christopher M. Grulke¹, Jeff Edwards¹, Andrew D. McEachran², Kamel Mansouri^{1,2,4}, Nancy C. Baker³, Grace Patlewicz¹, Imran Shah¹, John F. Wambaugh¹, Richard S. Judson¹ and Ann M. Richard¹

https://doi.org/10.1186/s13321-017-0247-6