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Disclaimer

The views expressed in this presentation are those of the author(s) and do not 
necessarily represent the views or policies of the U.S. Environmental Protection 
Agency, nor does mention of trade names or products represent endorsement 
for use.
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Who is CCTE?
Center for Computational Toxicology and Exposure (CCTE)

A research organization at US EPA Office of Research and Development tasked with developing and applying cutting edge
innovations in methods to rapidly evaluate chemical toxicity, transport and exposure to people and environments.

CCTE

Chemical Characterization & 
Exposure Division

Great Lakes Toxicology & 
Ecology Division

Biomolecular & Computational 
Toxicology Division

Scientific Computing & 
Data Curation Division

Rapid Assay Development Branch

Advanced Experimental Toxicology Models Branch

Computational Toxicology & Bioinformatics Branch

Rapid Assay Development Branch (RADB)
Develops the next generation of high-throughput toxicity assays to comprehensively cover the potential molecular and phenotypic 
responses resulting from chemical exposure and fill gaps in biological pathways and processes not addressed using existing assays.

Computational Toxicology & Bioinformatics Branch (CTBB)
Utilizes computational and informatics approaches to analyze and integrate data from high-throughput toxicity assays, complex 
culture models, alternative species, toxicokinetics and chemistry to predict adverse effects of chemicals in human and animal models.



Computational Toxicology Research Areas

• New Strategy for Hazard Evaluation: Improve efficiency and 
increase biological coverage by using broad-based (i.e. non-
targeted) profiling assays that cast the broadest net possible 
for capturing the potential molecular and phenotypic 
responses of human cells in response to chemical exposures.

# of 
assays

# of 
chemicals

Types of 
chemicals

Phase 1 
(2007 – 2009)

500 300 Mostly pesticides

Phase 2 
(2009 – 2013)

700 2,000 Industrial, consumer 
product, food use, ”green”

• ToxCast: Used targeted high-throughput screening (HTS) assays 
to expose living cells or isolated proteins to chemicals and 
assess bioactivity and potential toxic effects.

The NexGen Blueprint of CompTox at USEPA, Tox. Sci. 2019; 169(2):317-322

• Mostly targeted assays (chemical X  target Y)

• Incomplete coverage of biological space.



Tiered Hazard Evaluation Approach (1)

The NexGen Blueprint of CompTox as USEPA Tox. Sci. 2019; 169(2):317-322

• New Approach Methodologies (NAMs) are any
technology, methodology, approach or combination
thereof that can be used to provide information on
chemical hazard and risk that avoids the use of intact
animals.

• NAMs are a potential means to reduce the use of
animals in toxicity testing and accelerate the pace of
chemical risk assessment.

• US EPA CompTox Blueprint advocates the use of high
throughput profiling (HTP) assays as the first tier in
a NAMs-based hazard evaluation approach.

• HTP assay criteria:
1. Yield bioactivity profiles that can be used for

potency estimation, mechanistic prediction and
evaluation of chemical similarity.

2. Compatible with multiple human-derived culture
models.

3. Concentration-response screening mode.
4. Cost-effective.



Tiered Hazard Evaluation Approach (2)

The NexGen Blueprint of CompTox as USEPA Tox. Sci. 2019; 169(2):317-322

• To date, EPA has identified and implemented 
two HTP assays that meet this criteria. 

• High-Throughput Transcriptomics [HTTr]

• Whole Transcriptome TempO-Seq

• High-Throughput Phenotypic Profiling [HTPP]

• Cell Painting

• Both methods are complementary to each 
other and can be used in many different 
human-derived cell types.

• EPA has established scalable laboratory and 
bioinformatics workflows for each assay. 



US EPA HTTr Publications



• The TempO-Seq human whole transcriptome assay
measures the expression of greater than 20,000
transcripts.

• Requires only picogram amounts of total RNA per sample.

• Compatible with purified RNA samples or cell lysates.

• Lysates are barcoded according to sample identity and
combined in a single library for sequencing using industry
standard instrumentation.

• Scalable, targeted assay: 
• 1) specifically measures transcripts of interest
• 2) ~50-bp reads for all genes
• 3) requires less flow cell capacity than RNA-Seq

TempO-Seq Assay Illustration

Yeakley, et al. PLoS ONE 2017

Known, captured in probe 
manifests and fastq files

Aligned to reference 
transcriptome to generate counts

Templated Oligo with Sequencing Readout (TempO-Seq)



MCF-7 Pilot Experimental Design

Parameter Multiplier Notes
Cell Type(s) 1 MCF7

Culture Condition 1 DMEM + 10% HI-FBS

Chemicals 44 ToxCast chemicals with mechanistic variety and 
some redundancy.

Time Points: 1 6 hours

Assay Formats: 2 High-Throughput Transcriptomics
Cell Viability

Concentrations: 8 3.5 log10 units; semi log10 spacing
Biological Replicates: 3 Independent cultures



MCF-7 Pilot Chemical List

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.



HTTr Experimental Design and Bioinformatics Workflow

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.



HTTr Quality Control Criteria

Abbreviation Description Threshold Additional Information

FrVC Fraction of viable cells (PI-negative or Casp3/7-

negative) 

Reject < 50% Highly cytotoxic conditions no longer 

represent molecular initiating event

NMR Number of mapped reads, defined as sum of total 

read counts summed over all detected probes

Reject < 300,000 Threshold =10% of target depth

FMR Fraction of uniquely mapped reads Reject < 50% Majority of reads must align to a single 

probe sequence

Ncov5
The number of probes with at least 5 uniquely 

mapped reads

Reject < 5,000 Based on Tukey’s Outer Fence (3*IQR) of 

all viable samples cultured on each plate 

(test samples, vehicle controls, and 

reference chemical treatments)
Nsig80

The number of probes capturing the top 80% of 

signal in a sample

Reject < 1,000

GiC Gini coefficient computed for each sample based 

on the distribution of raw counts for all probes 

including those with 0 aligned reads

Reject > 0.95

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.
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D E F

HTTr Sample Quality Assessment (1)

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.



HTTr Sample Quality Assessment (2)

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.



HTTr Sample Performance Assessment

• Signature scoring using the single sample Gene Set Enrichment Analysis (ssGSEA) approach (Barbie et al. 2009)

• The “correct” target classes were identified for reference chemical treatments.

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.



HTTr Signal Strength

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.



CR Modeling / 
Identification of CRGs

C
Map CRGs to Pathways

D Define Molecular POD

Most Sensitive
Pathway

E

Normalize & 
Transform 

Data

Subset by 
Chemical + 
Matching 
Controls

Gene 
Expression 
Database

A B

Mechanism-Relevant
Pathway

BMDExpress
Parameter Criteria

Pre-filter: |FC| > 2 at any test concentration

Models Hill, Power, Linear, Poly2, 
Exponential 2|3|4|5 

BMR Factor: 1.349*SD of controls (10%)

Best Model 
Selection: Lowest AIC

Hill Model
Flagging:

‘k’ < 1/3 Lowest Positive Dose
Exclude Flagged Hill Models from Best Model 

Selection

Conc-Response Hit 
Criteria

(0.1*lowest conc. < BMC < highest conc.)
BMC fit p-value > 0.1
BMCL / BMCU < 40

Gene Set Analysis: > 3 Concentration-responsive genes
> 5% Gene Set Coverage

Gene Set 
Collections:

MSigDB (Liberzon et al. 2015)
BioPlanet (Huang et al. 2019)

CMAP (Subramanian et al. 2005)

Based on National Toxicology Program Approach to 
Genomic Dose-Response Modeling (NTP RR 5)

Adapted from Harrill et al. (2019)

Concentration Response Modeling: BMDExpress



Concentration-Response Modeling of Signature Scores (1)



• Takes into account coordinated changes in gene expression that may not be identified using gene level fitting approaches.

• All curve forms from BMDExpress, plus constant model.

• Provides continuous hit calls for identifying high confidence and low confidence hits.

Concentration response modeling of signature scores using tcplfit2 (https://rdrr.io/github/USEPA/CompTox-ToxCast-tcplFit2/)
Step 4:

CR Modeling

Concentration-Response Modeling of Signature Scores (2)



A B

Concentration-Response Modeling of Signature Scores (3)

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.

Fulvestrant Signature
(Top 100 Up & Down Genes)



Signature Modeling Reveals Biologically Relevant Targets 
as Most Sensitive

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.



Comparison of BMDExpress, Signature Modeling and ToxCast

• BPACSig  5th lowest potency of active signatures

• BPACBMDX  Most sensitive signature / pathway

• BPACHTS     Lower 5th percentile of active AC50 values for 
assays that pass a series of quality filters.

• BPACHTS and BPACSig are in better agreement than BPACHTS and 
BPACBMDX

• In most of these cases, BPACHTS is also more potent than 
BPACBMDX.

• The majority of these cases can be explained by the use of 
ToxCast assays for the specific target of the chemical that are not 
active/expressed in MCF7 cells.

• THRA / THRB
• CYP Assays
• PTPN Assays

Harrill et al., Toxicol Sci. 2021 Apr 27;181(1):68-89.



MCF-7 Pilot*
44 Chemicals

3 Exposure Times
+/- Stripped Media

MCF-7 Screen*
2,112 Chemicals

(ToxCast ph1-3 / e1k)
Single Exposure Time

& Media

U-2 OS Screen*
1,218 Chemicals

Single Time/Media HepaRG Screen*
1,218 Chemicals

Single Time/Media

PFAS Screen
150 Chemicals

U-2 OS + HepaRG

Volatiles
8 chemicals

Resp. Epithelial Cells
w/ Mark Higuchi & 

Adam Speen (CPHEA)

Cell Atlas
31 Cell Types

Baseline Profiles

CPP #2
24 Cell Types

Baseline Profiles

*Chemical Exposures:
• 8 Concentration Series
• Regular Log10 Spacing
• 3 Replicates per Conc
• Randomized Plate Layout

Slide courtesy of Logan Everett

High Throughput Transcriptomics (HTTr) Data Landscape

CPP #5 *
336 Reference

Chemicals
U-2 OS + HepaRG



Refinement of Concentration-Response Modeling Approach
Concentration-Response Modeling 

(tcplfit2) Ranking of Signatures Signature Aggregation 

Signature-Level:
• Benchmark Dose (BMD)
• Confidence Interval on BMD
• Hit Call Probability

Retinoic Acid

• Aggregation of signatures can aid in biological interpretation & putative target prediction.

RAR

Median of all 
super target 

BMDs

Most sensitive 
super target 

BMD



Applications for Molecular PODs
From HTP NAMs



Parameter Multiplier Notes

Chemicals 462 APCRA case study chemicals

Cell Types 4 U-2 OS HepaRG-2D MCF-7

Assay Formats 2 HTPP HTTr HTTr HTTr

Exposure Durations Variable 24 HR 24 HR 24 HR 6 HR

Concentrations: 8 3.5 log10 units; ~half-log10 spacing

Biological Replicates: Variable 4 3 3 3

HTP Screening Experimental Designs

Kavlock et al. (2018)
Chem. Res. Tox; 31(5): 287-290

International collaboration of regulatory scientists focused on next generation chemical risk 
assessment including deriving quantitative estimates of risk based on NAM-derived potency 
information and computational exposure estimates.

APCRA Chemicals
PK parameters necessary for in vitro to in vivo extrapolation (IVIVE) 
in vivo toxicity data   



U-2 OS Screening Results

HTTr

HTPP

min[HTTr | HTPP]

• A majority of chemicals were active in 
both the HTTr and HTPP assays.

• There were a larger number of 
chemicals active in HTTr only versus 
HTPP only.

• Most biological activity was observed 
between 1 and 10 uM.

• A few chemicals with HTTr PACs < 1 uM
had HTPP BPACs > 10 uM or were 
inactive. 



Comparison of Screening Results Across Cell Lines

• Molecular POD defined as the minimum potency observed in HTP NAM assays across three cell types.

MCF-7 U-2 OS

HepaRG



HTP Potency Estimate
(µM)

In vitro-to-in vivo 
extrapolation (IVIVE)

high-throughput toxicokinetics (httk)

HTP AED 
(mg/kg bw/day)

in vivo  point-of-departure

Database of in vivo effect values (EPA 
– ToxValDB)
• Mammalian species
• oral exposures
• Various study types
• NOEL, LOEL, NOAEL, LOAEL
• mg/kg/day

Toxicological 
threshold of 

concern 
(TTC)

Exposure predictions
(EPA ExpoCast)
• Systematic Empirical Evaluation 

of Models (SEEM) version 3
• Inferred from human 

biomonitoring data, production 
volume and use categories 
(industrial / consumer use)

Predicted exposure New approach methodologies (NAMs)

POD: point-of-departure
AED: administered equivalent dose

In Vitro to In Vivo Extrapolation (IVIVE) Using 
High-Throughput Toxicokinetic (httk) Modeling



Bioactivity / In Vivo Effect Value Ratio Analysis

• Negative ratios indicate that AEDs 
derived from HTP NAMs molecular 
PODs are conservative surrogates 
for traditional in vivo PODs.

• When cell lines are considered 
individually, ~66-68% of chemicals 
had negative ratios.

• When considered in combination, 
the number and percentage of 
chemicals with negative ratios 
increased (82.3 %). 

• Paul-Friedman et al. (2020)a:
• Using ToxCast, 89 % of APCRA 

chemicals had negative ratios.

• Positive ratios observed for several 
organophosphate and carbamate 
pesticides.



Bioactivity Exposure Ratio (BER) Analysis
• Negative ratios indicate a potential 

for human exposure to chemicals in 
a range that is bioactive in vitro.

• When cell lines are considered 
individually, ~1-2% of chemicals had 
negative ratios.

• When considered in combination, 
the percentage of chemicals with 
negative ratios did not appreciably 
change. 

• Positive ratios observed for several 
chemicals found in consumer 
products. 

• Most extreme negative ratios 
associated with banned or limited 
use organochlorine pesticides.



• High-Throughput Profiling:  Developed experimental designs and scalable laboratory workflows 
for high-throughput transcriptomics (and high-throughput phenotypic profiling) of environmental 
chemicals that can be used in multiple human-derived cell types.

• Potency Estimation: Developed high-throughput concentration-response modeling workflows to 
identify thresholds for perturbation of gene expression (e.g. BPACs).

• Comparison to ToxCast:  BPACs from HTTr were comparable to BPACs from ToxCast HTS assays.
• IVIVE: Potency estimates can be converted to administered equivalent doses (AEDs) using high-

throughput toxicokinetic modeling.
• Bioactivity to In Vivo Effect Value Ratio Analysis: AEDs derived from HTP assays were 

conservative compared to traditional PODs a majority of the time.  Performance improved to 
~80% when results from multiple cell types were considered in combination. 

• Bioactivity to Exposure Ratio (BER) Analysis: AEDs derived from HTP assays were compared to 
high-throughput exposure predictions.  There were very few chemicals where AEDs were within 
the range of exposure predictions. 

Summary and Conclusions



Future Directions

• Expand chemical space
• Screen additional chemicals in accordance with programmatic needs / goals.

• Expand biological space
• Continue screening a subset of chemicals through many biologically diverse cell lines.

• Refine signature concentration-response modeling approach
• Reduce redundancy in signature collection.
• Continued curation of target annotation.

• Refine methods for putative target prediction & confirmation
• Integration with other NAM’s data streams.
• Machine learning approaches.
• Bioactivity confirmation within tiered hazard evaluation framework.
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