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Disclaimer

The views expressed in this presentation are those of the author(s) and do not 
necessarily represent the views or policies of the U.S. Environmental Protection 
Agency, nor does mention of trade names or products represent endorsement 
for use.
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Regulatory Driver for Development & Use of NAMs by US EPA

The Toxic Substances Control Act (TSCA), as amended by the Frank R. 
Lautenberg Chemical Safety for the 21st Century Act, directs EPA to:

1. Reduce and replace, to the extent practicable and scientifically justified, the 
use of vertebrate animals in the testing of chemical substances or mixtures;

2. Promote the development and timely incorporation of alternative test 
methods or strategies that do not require new vertebrate animal testing

2016

“Alternative test methods”   “New Approach Methods (NAMs)”

“Alternative test methods” – Tools of the Trade
1. Computational toxicology and bioinformatics.
2. High-throughput screening methods.
3. Testing of categories of chemical substances.
4. Tiered testing methods.
5. In vitro studies.
6. Systems Biology.
7. ICCVAM or OECD validated assays.
8. Industry consortia that develop information submitted under this title.

https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/alternative-test-methods-and-strategies-reduce

Any technology, methodology, approach or combination thereof that can be
used to provide information on chemical hazard and risk that avoids the use of
intact animals.



Computational Toxicology Research Areas
The NexGen Blueprint of CompTox at US EPA 

Thomas et al. (2019) DOI: 10.1093/toxsci/kfz058

2016 2018 2019 2020

ToxCast: Uses targeted high-throughput screening (HTS) assays to 
expose living cells or isolated proteins to chemicals and assess 
bioactivity and potential toxic effects.

Richard et al. (2016) DOI: 10.1021/acs.chemrestox.6b00135

New Strategy for Hazard Evaluation: Improve efficiency and increase 
biological coverage by using broad-based (i.e. non-targeted) assays that 
cast the broadest net possible for capturing the potential molecular and 
phenotypic responses of human cells in response to chemical exposures.

Mostly targeted assays (chemical X  target Y).
Incomplete coverage of human biological space.



NAMs-Based Tiered Hazard Evaluation Approach (1)

High throughput profiling (HTP) assays are
proposed as the first tier in a NAMs-based hazard
evaluation approach.

HTP Assay Criteria:
1. Yield bioactivity profiles that can be used for

potency estimation, mechanistic prediction
and evaluation of chemical similarity.

2. Compatible with multiple human-derived
culture models.

3. Concentration-response screening mode.
4. Cost-effective.

To date, EPA has identified and implemented two 
HTP assays that meet this criteria. 

• High-Throughput Transcriptomics [HTTr]
• High-Throughput Phenotypic Profiling [HTPP]

The NexGen Blueprint of CompTox at US EPA 
Thomas et al. (2019) DOI: 10.1093/toxsci/kfz0582016 2018 2019 2020



• The TempO-Seq human whole transcriptome assay
measures the expression of greater than 20,000
transcripts.

• Requires only picogram amounts of total RNA per sample.

• Compatible with purified RNA samples or cell lysates.

• Lysates are barcoded according to sample identity and
combined in a single library for sequencing using industry
standard instruments.

• Scalable, targeted assay: 
• 1) specifically measures transcripts of interest
• 2) ~50-bp reads for all targeted genes
• 3) requires less flow cell capacity than RNA-Seq

TempO-Seq Assay Illustration

Known, captured in probe 
manifests and fastq files

Aligned to reference 
transcriptome to generate counts

Templated Oligo with Sequencing Readout (TempO-Seq)

Yeakley et al. (2017) DOI: 10.1371/journal.pone.0178302



MCF7 Pilot Experimental Design

Parameter Multiplier Notes
Cell Type(s) 1 MCF7

Assay Formats: 2 High-Throughput Transcriptomics
Cell Viability

Culture Condition 1 DMEM + 10% HI-FBS

Chemicals 44 ToxCast chemicals

Time Points: 1 6 hours
Concentrations: 8 3.5 log10 units; semi log10 spacing

Biological 
Replicates: 3 Independent cultures

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009

MCF7

DMSO Staurosporine (1 µM)

CellEvent Caspase 3/7



MCF7 Pilot Chemical List

• Chemicals were selected that cover a broad range of molecular targets with some redundancy within target class.

• Intentionally selected some chemicals whose molecular targets are not expressed in MCF7 cells (or in mammalian tissues).

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009



HTTr Experimental Design and Bioinformatics Workflow

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009

200X chemical stocks



Gene Signatures

• Understanding the biological meaning of changes in gene expression for 10,000 – 20,000 genes is difficult.

• Analyzing responses at the level of the gene signature aids in data interpretation.

• Takes into account coordinated changes in gene expression that may not be identified using gene level fitting approaches.

• Examples of signature types:
• Genes that are perturbed in diseased tissue vs. healthy tissue.
• Genes perturbed by gene knockdowns / knockouts.
• Genes perturbed by drugs or other chemicals with known (or unknown) mechanisms.

• Example use:
• If an unknown chemical X perturbs genes that are also perturbed by a well-characterized chemical with a specific 

mechanism of action, then one can infer the chemical X may affect the same molecular target(s).

• CCTE signature collection:
• Compiled from many public sources (MSigDB1, BioPlanet2, DisGeNET3, Connectivity Map4 )  ~10,000 signatures.

• Signature Scoring Method:
• Single Sample Gene Set Enrichment Analysis (ssGSEA)5

1 Liberzon et al., Bioinformatics. 2011 Jun 15;27(12):1739-40
2 Huang et al., Front Pharmacol. 2019 Apr 26;10:445

3 Pinero et al., Database (Oxford). 2015 Apr 15;2015:bav028
4 Subramanian et al., Science. 2006 Sep 29;313(5795):1929-35.

5 Barbie et al ., Nature. Nov 5;462(7269):108-12.



New and/or improved functionality of tcplfit2 (versus tcpl):
• All curve forms from tcpl and BMDExpress are included.
• Calculates benchmark concentrations (BMCs) in addition to AC50s.
• Models in the “up” and “down” direction.
• Provides continuous hit calls for identifying high confidence and 

low confidence hits.

Concentration response modeling of signature scores using tcplfit2 (https://rdrr.io/github/USEPA/CompTox-ToxCast-tcplFit2/)

Concentration-Response Modeling of Signature Scores (1)

Concentration-Response Modeling of 
Signature Scores

Most sensitive signature
OR

Statistic based on distribution 
of active signatures (5th %ile)

OR
By target class



A B

Concentration-Response Modeling of Signature Scores (2)

Fulvestrant Signature
(Top 100 Up & Down Genes)

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009

The expression of fulvestrant
signature “down” genes goes down
following ER antagonist treatment

The expression of fulvestrant
signature “down” genes goes up
following ER agonist treatment

These 
gene level 
data are 

noisy!

Signature 
level results 

display 
correct 

directionality!



Chemicals with known pharmacological targets 
show an “early wave” of biological activity.

Other potent toxicants 
( organometallics, 
dyes, etc) cause many 
signatures to be 
affected near the 
onset of biological 
activity.

1784 Chemicals Screened

5th%ile BMC of Active Signatures (log10 [µM])
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Distribution of BMCs of Active Signatures

MCF7 HTTr Screening Results (1)



Target

The most potent and efficacious signature hits correspond to known mechanisms for these chemicals.

MCF7 HTTr Screening Results (2)



MCF7 HTTr Screening Results (3)
Chemical 

Target
Group

Clustering based on signed area under the curve (AUC) groups similar chemicals together.



MCF7 HTTr Screening Results (4)



Comparison of Transcriptional BPACs to ER Model

ER Model log10(AC50, µM)
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• US EPA has developed a battery of 18 ToxCast assays to predict activity at the estrogen receptor (Brown et al. (2015) DOI: 
10.1021/acs.est.5b02641)

• Log10 AC50 values from the ToxCast ER model assays were compared to transcriptomic signature BPACs in MCF7 cells for a 
collection of 37 estrogenic chemicals.

• Signature-based BPACs are concordant with ER model predictions. 

• Estrogen receptor is also abundantly expressed in MCF7 cells (and 
other breast-derived cell lines).



Harrill et al., (unpublished). DO NOT CITE OR QUOTE



Potential Applications for HTTr-Derived 
Molecular PODs



Parameter Multiplier Notes

Chemicals 462 APCRA retrospective case study chemicals

Cell Types 4 U-2 OS HepaRG-2D MCF7

Assay Formats 2 HTPP HTTr HTTr HTTr

Exposure Durations Variable 24 HR 24 HR 24 HR 6 HR

Concentrations: 8 3.5 log10 units; ~half-log10 spacing

Biological Replicates: Variable 4 3 3 3

HTP Screening Experimental Designs

Kavlock et al. (2018)
Chem. Res. Tox; 31(5): 287-290

“Advancing Methodology” case study: deriving quantitative estimates of risk based on NAM-
derived potency information and computational exposure estimates.

APCRA Chemicals
PK parameters necessary for in vitro to in vivo extrapolation (IVIVE) 
in vivo toxicity data   



Comparison of Screening Results Across Cell Lines

Molecular POD defined as the minimum potency 
observed in HTP NAM assays across three cell types.

MCF7 U-2 OS

HepaRG

There are chemicals that have more potent bioactivity in one cell line as opposed to another.



HTP Potency Estimate
(µM)

In vitro-to-in vivo 
extrapolation (IVIVE)

high-throughput toxicokinetics (httk)

HTP AED 
(mg/kg bw/day)

in vivo  point-of-departure

Database of in vivo effect values (EPA 
– ToxValDB)
• Mammalian species
• oral exposures
• Various study types
• NOEL, LOEL, NOAEL, LOAEL
• mg/kg/day

Toxicological 
threshold of 

concern 
(TTC)

Exposure predictions
(EPA ExpoCast)
• Systematic Empirical Evaluation 

of Models (SEEM) version 3
• Inferred from human 

biomonitoring data, production 
volume and use categories 
(industrial / consumer use)

Predicted exposure New approach methodologies (NAMs)

POD: point-of-departure
AED: administered equivalent dose

In Vitro to In Vivo Extrapolation (IVIVE) Using 
High-Throughput Toxicokinetic (httk) Modeling



Bioactivity / In Vivo Effect Value Ratio Analysis

• Negative ratios indicate that AEDs 
derived from HTP NAMs molecular PODs 
are conservative surrogates for 
traditional in vivo PODs.

• When cell lines are considered 
individually, ~66-68% of chemicals had 
negative ratios.

• When considered in combination, the 
number and percentage of chemicals 
with negative ratios increased (82.3 %). 

• Paul-Friedman et al. (2020) 
(PMID: 31532525)

• Using ToxCast, 89 % of APCRA 
chemicals had negative ratios.

• Positive ratios observed for several 
organophosphate and carbamate 
pesticides.



Bioactivity Exposure Ratio (BER) Analysis
• Negative ratios indicate a potential 

for human exposure to chemicals in 
a range that is bioactive in vitro.

• When cell lines are considered 
individually, ~1-2% of chemicals had 
negative ratios.

• When considered in combination, 
the percentage of chemicals with 
negative ratios did not appreciably 
change. 

• Positive ratios observed for several 
chemicals found in consumer 
products. 

• Most extreme negative ratios 
associated with banned or limited 
use organochlorine pesticides.



• High-Throughput Profiling:  Developed experimental designs and scalable laboratory workflows 
for high-throughput transcriptomics screening of environmental chemicals that can be used in 
multiple human-derived cell types.

• Potency Estimation: Developed high-throughput concentration-response modeling workflows to 
identify thresholds for perturbation of gene expression (e.g. BPACs).

• IVIVE: Potency estimates can be converted to administered equivalent doses (AEDs) using high-
throughput toxicokinetic modeling.

• Bioactivity to In Vivo Effect Value Ratio Analysis: AEDs derived from HTP assays were 
conservative compared to traditional PODs a majority of the time.  Performance improved to 
~80% when results from multiple cell types were considered in combination. 

• Bioactivity to Exposure Ratio (BER) Analysis: AEDs derived from HTP assays were compared to 
high-throughput exposure predictions.  There were very few chemicals where AEDs were within 
the range of exposure predictions. 

• Comparison to ToxCast:  Applications using HTP NAMs potencies as input yielded comparable 
results compared to the use of ToxCast NAMs potencies.

Summary and Conclusions
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