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Objectives

 Broad overview of the Next Generation Blueprint of Computational 
Toxicology at US EPA  emphasis on the role of transcriptomics.

 Provide information on technological and analytical innovations that 
support high-throughput transcriptomics (HTTr) chemical screening.
– Targeted RNA-Seq technology.
– Novel bioinformatics workflows and associated open-source tools.
– Transcriptomic reference materials.
– International effort to develop omics reporting frameworks.



Computational Toxicology Research Areas at EPA
The NexGen Blueprint of CompTox at US EPA 

Thomas et al. (2019) DOI: 10.1093/toxsci/kfz058
ToxCast: Uses targeted high-throughput screening (HTS)
assays to expose living cells or isolated proteins to chemicals
and assess bioactivity and potential toxic effects.

Richard et al. (2016) DOI: 10.1021/acs.chemrestox.6b00135

Mostly targeted assays (chemical X  target Y).
Incomplete coverage of human biological space.

New Strategy for Hazard Evaluation: Improve efficiency and
increase biological coverage by using non-targeted profiling
assays that cast the broadest net possible for capturing the
potential molecular and phenotypic responses of human cells to
chemical exposures.



NAMs-Based Tiered Hazard Evaluation Approach
High throughput profiling (HTP) assays are proposed
as the first tier in a NAMs-based hazard evaluation
approach.

HTP Assay Criteria:
1. Yield bioactivity profiles that can be used for

potency estimation, mechanistic prediction and
evaluation of chemical similarity.

2. Compatible with multiple human-derived culture
models.

3. Concentration-response screening mode.
4. Cost-effective.

To date, EPA has identified and implemented two HTP 
assays that meet this criteria. 

• High-Throughput Transcriptomics [HTTr]
• High-Throughput Phenotypic Profiling [HTPP] The NexGen Blueprint of CompTox at US EPA 

Thomas et al. (2019) DOI: 10.1093/toxsci/kfz058



Templated Oligo with Sequencing Readout 
(TempO-Seq)

The TempO-Seq human whole transcriptome assay
measures the expression of greater than 20,000
transcripts.

Requires only picogram amounts of total RNA per
sample.

Compatible with purified RNA samples or cell
lysates.

Lysates are barcoded according to sample identity
and combined in a single library for sequencing using
industry standard instruments.

Scalable, targeted assay: 
• 1) specifically measures transcripts of interest
• 2) ~50-bp reads for all targeted genes
• 3) requires less flow cell capacity than RNA-Seq

Yeakley et al. (2017) DOI: 10.1371/journal.pone.0178302



Chemical Screening in MCF7 Cells Using HTTr

Parameter MCF7 
Pilot

MCF7 
Screen

Notes

Cell Type(s) 1 1 MCF7

Assay Formats: 2 2 High-Throughput Transcriptomics
Cell Viability

Culture 
Condition 1 1 DMEM + 10% HI-FBS

Chemicals 44 1784 ToxCast chemicals

Time Points: 1 1 6 hours

Concentrations: 8 8 3.5 log10 units; semi log10 spacing

Biological 
Replicates: 3 3 Independent cultures

MCF7

DMSO Staurosporine (1 µM)

CellEvent Caspase 3/7



Experimental Design for HTTr

LabCyte® 
Echo 550
Acoustic 

Dispenser

= Test chemicals in 8-point dilution series

= Reference chemical #1 (ex. Genistein, 10 µM)

= Reference chemical #2 (ex. Sirolimus, 0.1 µM)

= Reference chemical #3 (ex. Trichostatin A, 1 µM)

= Vehicle controls (DMSO)

= No treatment controls

Used to track assay performance inclusive of cellular response

Dose Plate Assay Plate

No cells Cells

= Reference RNAs

= Reference Lysates

= Lysis Buffer Blanks

Used to track assay performance independent of 
chemical treatments and responsivity of culture.

= Reserved for Sequencing Vendor

Reference 
Samples

Reference 
Treatments



Use of Reference Samples in HTTr Screening
• Reference samples are intended to provide objective evaluation(s) of 

the technical performance of an ‘omics assay…NOT the biological 
response of an in vitro test system.
– Use reference treatments for this latter purpose.

• Processed in parallel with test samples  they should be subject to the 
same manipulations and assay conditions as test samples.

• Implemented in a manner that facilitates monitoring of consistency of 
transcriptomics assay results generated within studies, across studies, 
across laboratories and over time.



Reference Samples: History of Use for HTTr
“Early days” (2017-2020) at US EPA:
Name Description Observations

Reference Pair #1 
(purified RNA)

Takara UHRR (636690) 
Takara HBRR (636530)

• Comparable to Microarray Quality Control Consortium (MAQC) 
reference samples (doi: 10.1038/nbt1239).

• Finite resource sourced from distinct individuals.
• Not optimal for evaluating performance of cell-lysate compatible 

transcriptomics assays.

Reference Pair #2 
(bulk lysates)

MCF7 Cells
DMSO (0.5%) Treated 

TSA (1 µM) Treated 

• Generated at US EPA
• Fewer genes detected compared to Reference Pair #1.
• Range of FC values smaller than Reference Pair #1.

US EPA perceived a need to develop replenishable human-derived transcriptomics 
reference samples that are:

– Compatible with multiple assay technologies.
– Available as both purified RNA and cell lysates.
– Yield reproducible fold-change profiles across production batches.



Engineering of Transcriptomics Reference Samples
• Paired reference samples were prepared by combining the genetic material from different 

human-derived cell lines cultured under different conditions.
• Formulated to mimic the performance characteristics of MAQC samples.

• Prepared as both purified RNAs and cell lysates (BioSpyder, Inc.)

Sample # of Genes  
Detected a

BSP_RNA_A 13,962

BSP_RNA_B 13,779

BSP_LYSATE_A 14,919

BSP_LYSATE_B 14,565

Sample Pair # of Genes
in Common a

RNA_A & 
RNA_B 12,881

LYSATE_A & 
LYSATE_B 13,546

Similar numbers of detected genes in engineered reference 
samples compared to MAQC or Takara samples.

a Whole transcriptome TempO-Seq @ 8M mapped reads. Genes with count > 5 considered “detected”
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and lysates are highly correlated.

* DESeq2-moderated fold changes
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* modified from (House et al. 2017)

Plates with potential performance issues 
flagged for additional scrutiny

Evaluating HTTr Assay Performance



Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009

HTTr Bioinformatics Pipeline

Primary Goals:
• Reproducible & open source

– github.com/USEPA/httrpl_pilot
– github.com/USEPA/CompTox-

httrpathway
• Automate and efficiently execute 

computationally intensive steps.
• Focus on concentration-response 

modeling and molecular point-
of-departure (mPOD) 
determination.

• Store analysis results in a 
queryable database structure 
(MongoDB).



HTTr Quality Control Metrics
Abbreviation Description Threshold Additional Information

FrVC Fraction of viable cells (PI-negative or Casp3/7-

negative) 

Reject < 50% Highly cytotoxic conditions no longer 

represent molecular initiating event

NMR Number of mapped reads, defined as sum of total 

read counts summed over all detected probes

Reject < 300,000 Threshold =10% of target depth

FMR Fraction of uniquely mapped reads Reject < 50% Majority of reads must align to a single 

probe sequence

Ncov5
The number of probes with at least 5 uniquely 

mapped reads

Reject < 5,000

Based on Tukey’s Outer Fence (3*IQR) 

of all viable samples cultured on each 

plate (test samples, vehicle controls, and 

reference chemical treatments)

Nsig80
The number of probes capturing the top 80% of 

signal in a sample

Reject < 1,000

GiC Gini coefficient computed for each sample based on 

the distribution of raw counts for all probes including 

those with 0 aligned reads

Reject > 0.95

Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009



HTTr QC Results – MCF7 Screen

• The screen contained 
32,886 TempO-Seq 
samples.

• None of the lysis 
buffer blank samples 
passed the QC 
criteria.

• > 99% of test samples 
were of acceptable 
quality based on QC 
criteria.

• In some cases, 
samples flagged for 
viability did not fail 
other QC criteria.



Signature Concentration-
Response Modeling

github.com/USEPA/CompTox-httrpathway
(Richard Judson)

DESeq2

ssGSEA

tcplfit2

Method intended to address coordinated 
changes in expression in genes belonging to 

the same gene set / signaling pathway.

Signature Concentration-Response Modeling



Signature Scoring Procedure

Pr
ob

es

Veh
Ctrls

Incr
Dose

DESeq2

Count data per 
chemical

ssGSEA

Single-Sample Gene Set Enrichment Analysis (ssGSEA) 
(Barbie, et al. Nature 2009)
• Score coordinated responses at each concentration
• Test for multiple genes in a signature enriched among 

most extreme fold-changes

 Bioplanet (Huang, et al. Front Pharmacol 2019)

 CMap (Subramanian, et al. Cell 2017)

 DisGeNET (Pinero, et al. Database 2015)

 MSigDB (Liberzon, et al. Cell Syst 2015)

Catalog of gene set signatures with toxicological 
relevance, annotated for known molecular targets

Compute signature 
scores from all 
gene expression 
changes

Estimate fold-
changes for all 
genes



Genistein (Weak) Sirolimus (Medium) Trichostatin A (Strong)

Reference Chemical (Effect Size)
Pr

ob
es

Veh
Ctrls

Incr
Dose

DESeq2

Count data per 
chemical

ssGSEA • Differential expression analysis of 3 reference chemical exposures repeated 37 times (MCF7)

• Computed distribution of correlations between each repeat analysis

• Signature scores have higher reproducibility than fold-changes, especially for weaker 
effect sizes

Signature Scoring of Reference Treatments



Signature Scoring Identified Expected Biology
• Reference treatments produced 

higher absolute signature scores 
for signatures associated with 
primary mechanisms of action.

• The expected biology was 
identified!

• Reference treatments did not 
produce higher absolute 
signature scores in a set of 
synthetic “random” signatures.



Signature Score Concentration-Response Modeling
Concentration response modeling of signature scores using tcplfit2 (github/USEPA/CompTox-ToxCast-
tcplFit2/)

Ranking of Active Signatures

Most sensitive 
signature

OR
Statistic based on 

distribution of active 
signatures (5th %ile)

mPODBMC

Cutoff

Top

[ 3-log10(BMC) ]
X

| Top / Cutoff |
X

Sign (Top)

Signed, Scaled Area 
Under the Curve (ssAUC)

Used to discern mechanism

Lovastatin
HALLMARK_CHOLESTEROL_HOMEOSTASIS



Harrill et al. (2021) DOI: 10.1093/toxsci/kfab009

A BFulvestrant Signature
(Top 100 Up & Down Genes)

The expression of fulvestrant
signature “down” genes goes 
down following ER antagonist 
treatment

The expression of fulvestrant
signature “down” genes goes up
following ER agonist treatment

These 
gene 
level 

data are 
noisy!

Signature 
level results 

display 
correct 

directionality
!

Signature Scores - Directionality of Response



Chemicals with known pharmacological targets in MCF7 
cells show an “early wave” of biological activity.

Other potent 
toxicants ( organo-
metallics, dyes, etc) 
cause many 
signatures to be 
affected near the 
onset of biological 
activity.

1767 Chemicals Screened

5th%ile BMC of Active Signatures (log10 [µM])
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HTTr Screening Results



Mechanistic Clustering Using Signature ssAUC

Potent chemicals with known specificity for a molecular target expressed in MCF7 cells 
tend to cluster together when using signature scores (ssAUC) as the response metric.

Chemicals with BMC05 < 1 µM
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Exploring Similarities in Chemical Response (1)

Data visualization tools (UMAP) help identify chemicals that produce similar responses.

Group of chemicals 
producing similar 

biological responses



Exploring Similarities in Chemical Response

Similar classification of chemicals as ER agonists or ER antagonists using HTS or HTTr signatures.



To develop frameworks for the standardisation of reporting of ‘omics data generation 
and analysis, to ensure that all of the information required to understand, interpret and 
reproduce an ‘omics experiment and its results are available. 

Purpose: to ensure that sufficient information is available to enable an evaluation of the 
quality of the experimental data and interpretation, and support reproducibility.

NOT to stipulate the methods of data analysis or interpretation….Rather, provide guidance on 
reporting of information that fosters transparency and reproducibility.

Project Name Project Leads

Metabolomics Reporting 
Framework (MRF)

Mark Viant (Univ. Birmingham, UK)

Transcriptomics Reporting 
Framework (TRF)

Joshua Harrill (US EPA)
Carole Yauk (University of Ottawa)
Matt Meier (Health Canada)

OECD Secretariat Magda Sachana

Harmonized 
OECD Omics 

Reporting 
Framework

(OORF)

OECD Omics Reporting Framework Project
(2018 – Present)



• Both TRF and MRF
• TRF only
• MRF only

Each module has: 1) a reporting template (Excel)
2) a narrative guidance 

Modular Structure of OORF



OORF Reporting Templates

• Prompts data providers to report details of their experiment.
• Links to narrative guidance with descriptions of what type of information to enter in each field.



Refining the OORF with Paired Trials



OECD Omics Reporting Framework Project

• Genesis and 
progress towards 
the OORF detailed 
in this publication.

• Early draft available 
at OECD omics 
website.

• Review and 
approval by OECD 
Extended Advisory 
Group for Molecular 
Screening and 
Toxicogenomics 
(EAGMST) in Q3 
2022!https://www.oecd.org/chemicalsafety/testing/omics.htm



Summary

 Innovations in High-Throughput Transcriptomics Screening:
– Targeted RNA-Seq assay.
– Scalable laboratory workflows for chemical exposure and lysate generation.
– Reproducible, open-source data analysis pipeline(s).
– Improvements to ToxCast pipeline (tcpl) concentration-response modeling software.
– Novel approach for signature level concentration-response analysis.
– Data visualization techniques for exploring chemical / biological response similarity.

 Development of transcriptomics reference materials.

 Reporting frameworks for toxicology studies involving omics technologies.
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