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QSA/PR Model

* 31(000) Flavors...let’s go with vanilla

* Interpretability For Regulation
* Global vs. Local ‘e
* Global models theoretically can flag compounds unlike the chemical yd
space of training data ,,/
* Techniques like GenRA or analogue analysis provide local insights ',/' ®

* Regulators seek abstractions of globally relevant indicators of s
toxicity, environmental persistence, or other concern x‘
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QSA/PR Model

* Representation Matters

* “Descriptors” ~
 Structure counts, fingerprints, SMILES, etc. ,/:
* Embeds chemistry as glyphs representing functional groups 7
* Physiochemical indices i
* Embeds chemistry as reals representing topology and property O ,/', O
* Constitutional yd
* Embeds chemistry as reals representing global molecular properties "
e Semi-empirical model predictions ® ///
 Embeds chemistry as low-level model predictions ’




Automated Descriptor Selection

* Algorithmic selection can
overrepresent
informatically entangled
facets of structure

* Depending on the
structure of the dataset,
this can “over-localize” the
mechanisms described by
the model
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The Traditional Case of Overfitting

* Mappings can overfit
because they do not
necessarily abstract
underlying principles that
govern the chemistry or
physics

* An ‘overfit’ model has O
mapped each training
point directly to its e ® ® o o
response, memorizing the °®® —r———8-

noise and local patterns
of the data



Model Complexity & Fit Underfit , Overfit
| Region | Region
External Error:
e Fitting is a function of \:_/
model complexity — the Training Error }
more information a model l

can contain, the more
capacity it has to memorize

* With more limited capacity,

Model Complexity

Support Vector Regression

It l.ea.rns the data more 5-fold CV Score Training Data Score Lo
efficiently R "
e Efficiency means finding LA -
useful, high-level g 3
abstractions within the - “3
data e 02

BB L AD Y LR A3 1A

Hyperparameter Gamma

=
=



Common Types of Regressor

* “Neighborhood” models
* K-Nearest Neighbors
* Decision Trees
 Random Forests
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Common Types of Regressors

* “Neighborhood” models
* K-Nearest Neighbors
* Decision Trees
 Random Forests

* “Geometric” models <
* Kernel machines
* Parametric regression 7 N 7 N7

* “Representation” models
* Deep neural networks



I Random Forests
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Immunity?

* |In one sense

* Breiman random forests are like k-Nearest Neighbor model in that they
explicitly store a representation of the data they are trained on

* Breiman forests grow trees without pruning, which often results in a data point getting
its own leaf

* This is an explicit representation of the data
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Immunity?

* Breiman forests bootstrap with replacement for each tree so that a given tree
does not see the entire training set (1/e = 63%)

* Do they “overfit”? Not really, because it memorizes its exposed training set by
construction

* The “partially blind” ensemble effect of the bootstraps causes all these
memorizations to wash out, so the memorization is “blurred”



* Bootstrapping partially blinds the model

“Partially blind”
ensemble

e The partially blind trees “wash out” their
predictions, resulting in a more generalized model

e But the model contains a memorized form of the data
so the proportional representation of the training set
matters a lot!



|_| m itatiOnS Depth Scanning, Random Forest

* There is a limit to the overfitting 12 A
resistance of the random forest
the is relevant to “global”

modeling 10 -

* The high-level abstractions of
the shallow trees perform better
than the local chemistries of the
training domain

Mean Average Error

. ) 0.6 1
Careful selection of chemical

representation can fix this, but
short of that it may be savvy to 044 | . | | .

® Training Set
& External Chemical Set

use a more conservative model v 4 ; g 10 12
for highly general chemistries Depth




Conclusions

 Demands for transparency, generality and clarity limit regulatory
ability to rely on statistical summaries in model validation

* Idiosyncrasies of public data sets increase concern around overfitting
or over-localization

e Due to EPA interest in exotic chemistries (carbon-fluoro bonds,
metallics, etc.) we are integrating analysis to combat over-localization
to produce more robust theoretical underpinnings for policy decisions
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