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Chemical modeling requires a quantitative definition of chemical
space. A quantitative chemical space encodes patterns within
chemical data, and structure-activity modeling (SAR) works to relate
those patterns to chemical activities and properties of interest. A
common assumption of the SAR community is that, while lower
dimensional chemical spaces are desirable, it often takes many
independent quantities to appropriate describe the necessary
chemical information to predictively capture activities of interest.

A low-dimensional chemical space is desirable because it is easier to
visualize, simpler to interpret, and can be used to generate insights
that enable greater scientific understanding. Because of the elegance
of low-dimensional chemical spaces, methods for reducing many
independent chemical descriptors to few are sought after.

Machine learning offers the concept of manifolds to facilitate these
efforts. It often takes many independent variable to capture qSAR,
however applying so-called “manifold learning” algorithms to large
amounts of data gives us insight into whether we can automatically
detect lower-dimensional projections of chemical data in such a way
that preserves the information necessary to accurately predict
chemical properties through quantitative structure-activity
methodology.

Does The Projection Preserve Information?

Overview Visualizing Chemical Space
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Results

t-Distributed Stochastic Neighbor Embedding (TSNE) produces
the best embedding of chemical space according to these
results. The 2-dimensional space from t-SNE projection produces
modeling scores comparable with the original 16-dimensional space.

This likely arises from the fact many shallow learners take advantage
of local similarities between compounds that TSNE explicitly utilizes
when projecting the manifolds. This preserves patterns that are
useful for predicting the water solubility of compounds.

We tested the ability of five common manifold learning
methods to preserve enough structural detail for regression
algorithms to learn and predict the water solubility of
compounds. The manifold learner reduces a 16-dimensional
chemical space to 2 dimensions. Regression algorithms are then
trained on and compared between both projections of chemical
space.
Manifold Learning Algorithms Regression Algorithm
t-Distributed Stochastic Neighbor 
Embedding1

SVR – Support Vector Regression

Multidimensional Scaling2 RFR – Random Forest Regression

Isomaps3 XGB – Extreme Gradient Boosted Trees

Spectral Embedding4 DTR – Decision Tree Regression

Locally Linear Embeddings5 KNN – k-Nearest Neighbor Regression

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

The views expressed here do not necessarily reflect US 
Environmental Protection Agency policy or position.


	Slide Number 1

