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Method: 
1. Chemical treatments associated with LINCS L1000 profiles were matched to EPA 

substance identifiers (DTXSIDs) using ChemReg [3]
2. LINCS profiles corresponding to chemical concentrations above the “cytotoxic burst” 

value (InVitroDB) were excluded from the analysis
3. Exemplar chemicals associated with MIEs of interest were excluded from classifier 

training for downstream validation
4. Remaining data were partitioned into MIE-specific training data sets (see Figure 2)
5. Binary classifiers were trained independently for each of 52 distinct MIEs using the R 

package caret, 500 null classifiers (see Figure 4) were trained for each combination 
of MIE and classification algorithm

6. Classifiers that passed empirical significance testing were flagged as candidate high 
performance classifiers

7. Candidate high performance classifiers were validated with training excluded 
exemplar chemicals (see Figure 6)

Figure 2. Example of training data structure for Estrogen Receptor inhibition. Binary classifiers 
were trained for each MIE using size-matched collections of LINCS L1000 gene expression profiles 
(represented by vertical bars) partitioned into a MIE-Active and MIE-Inactive category. MIE-Active 
profiles were associated with a chemical treatment that is linked to a given MIE in RefChemDB.  MIE-
Inactive profiles are selected at random from a collection of chemicals with no association with the given 
MIE in RefChemDB.   

• To optimize classifiers, we evaluated model performance across all the 3 types 
of gene expression feature sets and 6 classification algorithms (Figure 3). 

• Classifiers were trained using 6 different algorithms
• Classifiers were trained using three different sets of features:

1. All Genes:
• ~12,000 transcripts, including both measured and inferred expression

2. Landmark genes
• ~1,000 transcripts that are directly measured in the L1000 assay

3. Pathway scores
• Canonical pathways from MSigDB [4] scored with gene set enrichment 

analysis [5], calculated from the “All Genes” features
• Cross-fold validation accuracies were compared for the 52 MIE classifiers 

trained on different feature types using a paired Wilcoxon test 
• Landmark Gene based classifiers consistently out-performed “All Gene” and 

“Pathway Score” based classifiers, regardless of algorithm

Figure 1. Data processing and classifier training workflow.

Empirical Significance Testing

Figure 4. Example of empirical significance calculation using null model accuracy.

• Integrated RefChemDB chemical-MIE annotations with LINCS chemical 
identifiers and gene expression profiles in a machine learning framework 

• Trained binary classifiers to predict activation of 52 distinct MIEs
• Classifiers trained on landmark genes yielded the highest internal accuracy 
• 47 classifiers that modeled MIEs significantly better than null models, 45 of 

which were validated with training-excluded exemplar chemicals
• 11 MIEs modeled with the remaining classifiers showed correctly predicted MIE 

activation of training-excluded exemplar chemicals
• Some exemplar chemicals predicted as MIE active in the absence of 

literature annotations
• Findings suggest that ML-based methods for predicting MIEs may be helpful in 

prioritizing chemicals for further study based on transcriptomic profiling and 
may inform decisions on suitable cell-types for further screening 

Figure 3. Comparison of internal accuracy distributions for classifiers trained each 
combination of training algorithm and training feature type. P-values are from a two-tailed 
paired Wilcoxon test. 

Selection of Training Data
U.S. EPA is utilizing high-throughput transcriptomics (HTTr) to screen chemicals for 
potential toxicity. There is an unmet need for methods to predict molecular initiating 
events (MIEs) that lead to toxic effects based on the transcriptional response to 
exposure, such as the primary protein targets of a chemical. To address this 
challenge, we are developing a machine learning based method that integrates HTTr 
data and existing chemical-MIE labels to predict MIEs for unannotated chemicals.
Key points:
• Integrated LINCS L1000 CMAP gene expression compendium [1]
• Used RefChemDB database of chemical-protein target interactions [2]
• Trained binary classifiers on integrated data sets with the following parameters:

• 52 MIE prediction models for MCF7-derived LINCS L1000 expression profiles
• 3 Training Feature Types x 6 Classification Algorithms

Classifier Optimization

High-Performance Classifier Selection
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• Identified candidate high performance classifiers using an empirical significance 
testing approach

• Classifiers that generated an internal accuracy that is higher than 95% of their 
“null” counterparts (p-value < 0.05) were retained for further analysis

• 47 candidate high performance classifiers spanning 12 MIEs passed empirical 
significance testing and were then validated on exemplar chemicals
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• MIE activation predictions were generated for all MCF7-derived gene expression 
profiles in the LINCS L1000 CMAP data set

• 45 classifiers were validated using training-excluded exemplar chemicals. 
Retained classifiers must generate a prediction for their training-excluded 
exemplar chemical that is greater than 75% of the chemicals in the LINCS 
L1000 CMAP data set

• Predictions for high performance classifiers associated with the same MIE were 
averaged to generate ensemble predictions 

• Confirmed high performance classifiers spanned 11 MIEs

Figure 6. Heatmap showing MIE activation predictions from confirmed high-performance 
classifiers. Predictions shown for the 11 training-excluded exemplar chemicals (rows) from the 
11 confirmed high-performance classifiers (columns). Shading indicates percent rank of each 
chemical’s prediction relative to all other predictions for the same MIE. Dark green indicates 
affirmative prediction of MIE activation. * indicates chemical-MIE linkage in RefChemDB.

Figure 5. Schematic 
showing selection of 
high-performance 
classifiers. Classifiers 
were generated for the 
same MIE using 6 training 
algorithms. Classifiers 
were then filtered based on 
Empirical Significance 
testing (pvalue < 0.05) and 
exemplar chemical 
prediction (prediction > 
0.75). Classifiers that met 
both criteria were termed 
“confirmed high 
performance classifiers”.

• Confirmed high performance classifiers correct predicted MIE activation for their 
corresponding training-excluded exemplar chemicals

• Some classifiers predicted MIE activation for chemicals not annotated for the 
MIE
• Possibly false positive predictions
• Possibly the result of convergence of modeled MIEs onto key events 

activated by training-excluded exemplar chemicals

Link to BMC BioData Mining
manuscript describing this
work:

KNN (K-Nearest Neighbor) MLP (Multi-Layer Perceptron)

SVM_L (Support Vector Machine Linear)

SVM_R (Support Vector Machine Radial)SVM_P (Support Vector Machine Poly)

RF (Random Forest)

The prediction of chemical bioactivity at the level of MIEs required the integration of 
existing chemical-MIE annotations and a large gene expression compendium (Figure 1). 
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