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• In an effort to reduce animal testing, U.S. EPA has proposed a new tiered
testing strategy for assessing chemical hazards which starts with assays that
are high-throughput and enable broad biological coverage [1].

• Hundreds of chemicals can be tested in a dose-responsive manner with
targeted high-throughput transcriptomics in a single experiment using cultured
human cell lines, leading to the generation of large amounts of high
dimensional data.

• Traditionally, toxicological dose-response curves would be fit to these data at
the probe/gene-level or aggregated to a pathway/geneset level to determine
the effect of the chemical treatment.

• These methods can be noisy (gene-level) or reliant on prior
knowledge/definition by the researcher.

• Autoencoders (AE) learn the important underlying structure of the data by
dimension reduction followed reconstruction of the data in an unsupervised
manner.

• Traditional AEs use 2 neural networks, encoder and decoder. The encoder
compresses the data into a latent variable (LV) dimension smaller than the
input. The decoder attempts to reconstruct the input from this latent vector.

• Our goal is to utilize autoencoders to extract meaningful biological responses
from high-throughput transcriptomic chemical screens.

Figure 1. Design of high-throughput transcriptomics for chemical screening. Dose plates with 
~40 chemicals are created with series spanning 8 doses (half log10 spacing). Placement of the 
samples on the plate is randomized. This is done in triplicate giving 3 replicates of a given chemical c 
at dose i. A total of 19,876 samples from 840 chemicals were used.
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• Refining the architecture and hyperparameters is the most important step moving
forward.

• Application of more sophisticated feature attribution techniques may be necessary to
pursue meaningful biological interpretations.

• Utilizing more powerful compute resources can speed up the training process and allow
for more data to be used.

• In the future, adding a similar dataset from the HepaRG cell type can add an additional
layer of information.
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Test plates seeded with one cell type: 
● MCF-7 ● U-2 OS    ● HepaRG

Biological Interpretation

Traditional AE Variational AE

Rank Architecture Learning Rate 
(LR) Validation Loss

1 [2500, 1250, 625] 6.54E-05 0.43971

2 [1000, 500, 250] 1.48E-04 0.44004

3 [2500, 1250, 625] 5.16E-05 0.44008

Rank Architecture Learning Rate 
(LR) KLD Annealer Validation 

Loss
1 [2500, 1250] 8.37E-05 Cyclical 0.08554

2 [2500, 1250] 9.04E-05 Cyclical 0.08560

3 [2500, 1250] 7.33E-05 Mono 0.08566

Dose-response curves were fit, using the LVs as a 
response, using tcplfit2.
Criteria for Passing:
• |Top over cutoff| > 1
• Hitcall > 0.9
• Benchmark Dose (BMD) < Max Dose

# Passing:
• AE – 131 hits spanning 19 different LVs
• VAE – 23 hits spanning 10 different LVs

Figure 4. Example Dose-Response curve of a Traditional AE derived latent variable. 

Figure 3. Performance of AE models. Top: Resulting validation losses from grid search. Middle: Hyperparameters for the top 3 performing 
models ranked by validation loss. Bottom: Pearson correlation of the LVs with quality control metrics as described in [2]. NMR = # of mapped 
reads, FMR = fraction of uniquely mapped reads, Ncov5 = # of probes with at least 5 uniquely mapped reads, Nsig80 = of probes capturing the 
top 80% of signal in a sample, GiC = Gini Coefficient.

Training Scheme
• Models considered:

• Number of layers: 1 - 3
• Architecture: [2500, 1250, 625], [1000, 500, 250]
• Latent dimension: 25
• Trained for: 50 (AE), 75 (variational AE) epochs
• Data Transformations:

• AE: log2(CPM)
• Varational AE: log10(CPM)

Figure 2. Weighting of the 
Kullback-Leibler
divergence (KLD) in 
variational AE training. 
Three different schemes for 
weighting the KLD term of the 
variational AE loss function 
were used. None/constant: 
The weight is held at one. 
Monotonic: Linear increase 
from epoch 1-50, then held at 
one. Cyclical: Linear 
increase from 0 to 1 over 25 
epochs, then resets.
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