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Overview

 Generic vs. bespoke PBTK models
 High Throughput Toxicokinetics (HTTK)
Model parameterization
 Physiologic parameters
 Chemical-specific parameters

Model evaluation
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Estimating Chemical Risk

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

 NRC (1983): Risk is a function of inherent chemical hazard, extent of exposure, 
and the dose-response relationship (including toxicokinetics) 

 High throughput risk prioritization based upon in vitro screening requires 
comparison to exposure

 Data obtained in vitro must be placed in an in vivo context: 
in vitro-in vivo extrapolation (IVIVE) 

 Information must be relevant to the scenario, for example, 
consumer, ambient, or occupational exposure. 
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Toxicokinetics

 Chemical-specific
 Links exposure with internal concentrations

Breen et al. (2021)

Exposure

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

in vivo 
TK data

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

 Toxicokinetics describes the absorption, distribution, metabolism, and excretion of a chemical by 
the body:
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In Vitro-In Vivo Extrapolation (IVIVE)

Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

Toxicodynamic
IVIVE

in vivo 
TK data

Breen et al. (2021)

Concentration
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In vitro Bioactivity 
Assay

 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models for 
anywhere from dozens to thousands of chemicals
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Generic vs. bespoke PBTK models
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 Toxicology has long relied upon model animal species

 People rely on mental models every day 
 For example, with repetitive activities like driving home from work

 Mathematical models offer some significant advantages:
 Reproducible
 Can (and should) be transparent

 …with some disadvantages:
 Sometimes reality is complex
 Sometimes the model doesn’t always work well
 How do we know we can extrapolate?

 …that can be turned into advantages:
 If we have evaluated confidence/uncertainty and know the “domain 

of applicability” we can make better use of mathematical models

USES MODELS

Everyone Uses Models
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 A “fit for purpose” model is an abstraction of a complicated problem that allows us to reach a decision.

“Now it would be very remarkable if any system existing in the real world could be exactly represented 
by any simple model. However, cunningly chosen parsimonious models often do provide remarkably 
useful approximations… The only question of interest is ‘Is the model illuminating and useful?’”
George Box

 A fit for purpose model is defined as much by what is omitted as what is included in the model.

 We must accept that there will always be areas in need of better data and models – our knowledge will 
always be incomplete, and thus we wish to extrapolate.

 How do I drive to a place I’ve never been before?

Fit for Purpose Models
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Fit for Purpose Toxicokinetics
 Chiu et al. (2007) “…[P]arsimony in selecting model structures is an important and guiding principle in 

developing models for use in risk assessments.”

 Complexity is constrained by limited data available to calibrate and test the model and the need to 
justify both the model assumptions and predictions

 Bessems et al. (2014): We need “a first, 
relatively quick (‘Tier 1’), estimate” of 
concentration vs. time in blood, plasma, or cell

 They suggested that we neglect active 
metabolism. But thanks to in vitro 
measurements we can now do better

 We still neglect transport and other 
protein-specific phenomena

Bessems et al. (2014) 
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Bespoke, Tailored, Custom…
Requires specific measurements

Generic, Off-the-Shelf/Rack, One-Size-Fits-Most
Approximately fits certain categories

Bespoke vs. Generic 
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Bespoke Models

Jones et al., 2012
PK of Statins

 Toxicokinetic (and pharmacokinetic) models are 
traditionally developed using in vivo data
 These data could be from clinical trials 

(increasing the relevance but limiting the 
measurements) or possibly animal studies 
(allowing tissues to be sampled) 

 Potentially resource-intensive

 Physiologically-based toxicokinetic (PBTK) models 
allow extrapolation between species and routes of 
administration
 Physiological information augments chemical-

specific data

 Can choose to make the complexity of the model 
and the number of physiological processes 
appropriate given the data and the decision context 
 This is how we “tailor” the model

Cho et al., 1990
PK of MDMA

In this case they 
had transporter-

specific data
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Generic Models
 A standardized physiology is assumed, regardless of chemical:
 The same parameters such as volumes, flows, and rates are used
 The same processes are included (hepatic metabolism, glomerular 

filtration) or omitted

 A fixed set of descriptors (such as rate of metabolism and protein binding) 
are varied from chemical to chemical and potentially measured in vitro

 The generic model is implemented once, reducing the likelihood of coding 
errors and enhancing documentation

 We can estimate the accuracy of a generic model for a new chemical using 
performance across multiple chemicals where data happen to exist

 The generic model is a hypothesis
 If we have evaluation data then we can check if we need to elaborate 

the model (for example, create a bespoke model)
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Generic Models as a Hypothesis
 For pharmaceuticals, in vitro data plus a model 

including hepatic metabolism and passive 
glomerular filtration (kidney) are often enough to 
make predictions within a factor of 3 of in vivo data 
(Wang, 2010)

 For other chemicals there may be complications, 
for example, there is thought to be (Andersen et al. 
2006) active transport of some per- and poly-
fluorinated alkyl substances (PFAS) in the kidney

 We could add a renal resorption process (that is, 
modify the generic model) only if there was some 
way to parameterize the process for most 
chemicals – otherwise we are back to tailoring the 
model to a chemical

PFAS (2)

Wambaugh et al. (2015)
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Generic PBTK Models

The idea of generic PBTK has been out there for a while…

1996

2006

2011

2006

2011

2009

1996

2005
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High Throughput 
Toxicokinetics
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Figure from Bell et al. (2018)

Most Chemicals Lack Toxicokinetic Data
 Most non-pharmaceutical chemicals – for example, flame retardants, plasticizers, 

pesticides, solvents – do not have human in vivo TK data. 
 Non-pesticidal chemicals are unlikely to have any in vivo TK data, even from animals
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HTTK:  A NAM for Exposure

 In vitro high throughput toxicokinetic (HTTK) methods can provide toxicokinetic 
data for larger numbers of chemicals 
(for example, Rotroff et al., 2010, Wetmore et al., 2012)

HTTK methods have been used by the pharmaceutical industry to determine range 
of efficacious doses and to prospectively evaluate success of planned clinical trials 
(Jamei, et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive 
concentrations from high throughput screening (that is, in vitro-in vivo
extrapolation, or IVIVE) (for example, Wetmore et al., 2015)

 A secondary goal is to provide open-source data and models for evaluation and 
use by the broader scientific community (Pearce et al, 2017)
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Exposure in vitro bioactive 
concentration

Toxicokinetic model:
Absorption
Distribution
Metabolism

Excretion

Internal 
concentration

in vitro 
TK data

in vivo 
TK data

Toxicokinetic
IVIVE

Breen et al. (2021)

Chemical-specific data are 
steadily being generated 

by ORD laboratories 
(Barbara Wetmore),
EPA contractors and 

collaborators

In Vitro-In Vivo Extrapolation (IVIVE)
 Translation of in vitro high throughput screening requires chemical-specific toxicokinetic models for 

anywhere from dozens to thousands of chemicals
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What is High Throughput Toxicokinetics (HTTK)?

.

.
.

....
.. .

In vitro toxicokinetic data + generic toxicokinetic model 
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Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

What is High Throughput Toxicokinetics (HTTK)?

.

.
.

....
.. .

In vitro toxicokinetic data + generic toxicokinetic model 
Typically, intrinsic hepatic clearance 
and fraction unbound in plasma
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Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

In vitro toxicokinetic data + generic toxicokinetic model 

.

.
.

....
.. .

What is High Throughput Toxicokinetics (HTTK)?
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Rotroff et al. (2010)
Wetmore et al. (2012)
Wetmore et al. (2015)
Wambaugh et al. (2019)

Wambaugh et al. (2015)
Pearce et al. (2017)

Ring et al. (2017)
Linakis et al. (2020)

.

.
.

....
.. .

What is High Throughput Toxicokinetics (HTTK)?

In vitro toxicokinetic data + generic toxicokinetic model 
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In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

httk
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What is High Throughput Toxicokinetics (HTTK)?
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Inhaled Aerosol

Dermal Exposure Route
EPA, Unilever

Gas Inhalation 
Exposure Route

Linakis et al. (2020)

Aerosol Inhalation 
Exposure Route 

(including APEX model)
EPA, USAF

Human Gestational Model
EPA, FDA (Kapraun et al, submitted)

MotherFetus
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Model parameterization
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Model Parameters
Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Measured in HT in vitro assays (Rotroff et al. 

2010; Wetmore et al. 2012, 2014, 2015; Wambaugh 
et al. 2019) or predicted in silico (Sipes et al. 
2017)

Fraction unbound to plasma protein (Fup)

Tissue:blood partition coefficients (for 
compartmental models)

Predict from phys-chem properties and 
tissue properties (Pearce et al., 2017)

Physiological parameters
Tissue masses (including body weight)

Gathered from data available in the 
published literature [Wambaugh et al. 2015; 

Pearce et al. 2017a]

Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity
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Chemical-Specific In Vitro Measurements for TK

Cryo-
preserved 

hepatocyte 
suspension

Shibata et al. 
(2002)

Cryo-
preserved 

Hepatocytes
(pooled)

Add Chemical
(1 and 10 µM)

Remove 
Aliquots at 
15, 30, 60, 

120 min

Determine 
concentration 

(analytical 
chemistry)

Add 
pooled 
plasma 

protein to 
one well

Add chemical Determine 
concentration 
in both wells 

(analytical 
chemistry)

Rapid 
Equilibrium 

Dialysis 
(RED) Plate

Incubate 
plates to 

allow 
equilibrium

.
.. .
..
. ..

.
.1 2

Rapid 
Equilibrium 

Dialysis 
(RED) 

Waters et al. 
(2008)

 In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured in 
clinical trials 
(Wang, 2010)
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PBTK Partition Coefficients
 Although in our model there are really three separate 

concentrations (C) that describe a tissue, we assume that 
they are related to each other by constants

 We assume that the ratio between the blood and plasma 
(𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is a uniform constant throughout the body

 We assume that all the tissues are “perfusion limited”, which 
means that the tissue concentration instantly comes to 
equilibrium with the free fraction in plasma (concentration is 
limited by flow to the tissue)  

Tissue

Arterial 
Plasma

Venous 
Plasma

Tissue 
Plasma

Venous 
RBCs

Tissue 
RBCs

Arterial 
RBCs

tissueQtissueQ

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑓𝑓𝑢𝑢𝑝𝑝 ∗ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Ktissue:plasma is the tissue 
partition coefficient 

which we either 
measure experimentally 

or predict in silico (for 
example Schmitt’s 

method)
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Development of Analytical Chemistry 
Method is a Rate Limiting Step

 The HTTK in vitro assays need to measure 
differences in chemical concentration

 Historically, methods cannot be developed 
for all chemicals

 Different chemicals require different 
instruments and methods, for example liquid 
vs. gas chromatography mass spectrometry 
(LC vs. GC MS)
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Development of Analytical Chemistry 
Method is a Rate Limiting Step
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 The HTTK in vitro assays need to measure 
differences in chemical concentration

 Area of the internal standard (ITSD) at a 
known, fixed concentration fluctuates with 
time, depends on instrument and 
methodology

 Analytical chemist must find a peak that 
corresponds to chemical of interest, and then 
follow the ratio R of the chemical peak to the 
ITSD

 Ability to resolve peak depends on the matrix 
(for example, blood vs. DMSO)
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Parameter Definition Value 
(Mean)

Units Reference

Qliverc Total blood flow to liver 
(arterial, gut)

3.6 1/h/kg BW Davies and Morris (1993)

QGFR Flow to glomerulus 
(glomerular filtration rate)

0.32 1/h/kg BW Davies and Morris (1993)

ncell_density Hepatocellularity 110 Millions of 
cells / g Liver

Carlile et al. (1997)

Vliverc Liver volume 0.0245 1/kg BW Davies and Morris (1993)
dliver Liver density 1.05 g/ml International Commission 

on Radiological 
Protection (1975)

Hematocrit Fraction of blood that is red 
blood cells

0.43 Unitless Davies and Morris (1993)

Cprotein Concentration of protein 
used in fup assay

5 µM Wambaugh et al. (2019)

Model parameters are either:
Physiological: determined 
by species and potentially 
varied via Monte Carlo 
(including HTTK-pop, Ring 
et al. 2017)
Chemical-specific: physico-
chemical properties 
(Mansouri et al., 2018) and 
equilibrium partition 
coefficients plus plasma 
binding and metabolism 
rates that are determined 
from in vitro 
measurements or 
potentially predicted from 
structure

Key Physiological Parameters for In Vitro-In Vivo Extrapolation

Breen et al. (2021)

𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
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Species-Specific Physiological Parameters for 
Physiologically-Based Toxicokinetics

• Davies, Brian, and Tim Morris. "Physiological parameters in laboratory animals and humans." Pharmaceutical research 10.7 (1993): 1093-1095.
• Brown, Ronald P., et al. "Physiological parameter values for physiologically based pharmacokinetic models." Toxicology and industrial health 13.4 (1997): 407-484.
• Birnbaum, L., et al. "Physiological parameter values for PBPK models." International Life Sciences Institute, Risk Science Institute, Washington, DC (1994).
• Robertshaw, D., Temperature Regulation and Thermal Environment, in Dukes' Physiology of Domestic Animals, 12th ed., Reece W.O., Ed. Copyright 2004 by Cornell University.
• Stammers, Arthur Dighton. "The blood count and body temperature in normal rats." The Journal of physiology 61.3 (1926): 329.
• Gordon, Christopher J. Temperature regulation in laboratory rodents. Cambridge University Press, 1993.
• Gauvin, David V. "Electrocardiogram, hemodynamics, and core body temperatures of the normal freely moving cynomolgus monkey by remote radiotelemetry", Journal of Pharmacological 

and Toxicological Methods

Parameter Units Mouse Rat Dog Human Rabbit Monkey
Total Body Water ml/kg 725.000 668.000 603.600 600.000 40.812 693.000
Plasma Volume ml/kg 50.000 31.200 51.500 42.857 110.000 44.800
Cardiac Output ml/min/kg^(3/4) 150.424 209.304 213.394 231.401 266.576 324.790
Average BW kg 0.020 0.250 10.000 70.000 2.500 5.000
Total Plasma Protein g/ml 0.062 0.067 0.090 0.074 0.057 0.088
Plasma albumin g/ml 0.033 0.032 0.026 0.042 0.039 0.049
Plasma a-1-AGP g/ml 0.013 0.018 0.004 0.002 0.001 0.002
Hematocrit fraction 0.450 0.460 0.420 0.440 0.360 0.410
Urine Flow ml/min/kg^(3/4) 0.013 0.098 0.037 0.040 0.042 0.151
Bile Flow ml/min/kg^(3/4) 0.026 0.044 0.015 0.010 0.083 0.004
GFR ml/min/kg^(3/4) 5.265 3.705 10.901 5.165 3.120 2.080
Average Body Temperature C 37.000 38.700 38.900 37.000 39.350 38.000
Plasma Effective Neutral Lipid Volume Fraction unitless 0.004 0.002 0.001 0.007 0.002 0.007
Plasma Protein Volume Fraction unitless 0.060 0.059 0.090 0.070 0.057 0.070
Pulmonary Ventilation Rate l/h/kg^(3/4) 24.750 24.750 24.750 27.750 24.750 27.750
Alveolar Dead Space Fraction unitless 0.330 0.330 0.330 0.330 0.330 0.330

 Rates, volumes, and tissue-specific information (not shown) are needed for a species
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Tools for Chemical-Specific PBTK Parameters

Physiological parameters depend on species, but we must also make chemical-specific estimates of tissue 
partitioning…
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Collaborative Evaluation of QSPRs 
(Quantitative Structure-Property 

Relationships) for HTTK
 Open-source QSPR predictions currently available for thousands of 

chemicals, including full Tox21 library

 EPA is leading an international collaborative evaluation of various QSPRs 
trained to both pharma and non-pharma chemicals for predicting HTTK
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Model evaluation
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Verifying 
PBTK Models

Process for the Evaluation of PBPK Models
1. Assessment of Model Purpose
2. Assessment of Model Structure and 

Biological Characterizations
3. Assessment of Mathematical Descriptions
4. Assessment of Computer Implementation
5. Parameter Analysis and Assessment of 

Model Fitness
6. Assessment of any Specialized Analyses

McLanahan et al. (2012)

Clark et al. (2004)
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Building Confidence in TK Models

Predicted Concentrations
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Chemical 
Specific 
Model

 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

Cohen Hubal et al. (2019)
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Building Confidence in TK Models

Predicted Concentrations
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Chemical 
Specific 
Model

 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

Cohen Hubal et al. (2019)



39 of 44

Building Confidence in TK Models

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties

Cohen Hubal et al. (2019)
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
 Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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Evaluation Example: Observed Total Clearance

Pharmaceuticals
Other Chemicals

Wambaugh et al. (2018)

 We estimate clearance from two 
processes – hepatic metabolism 
(liver) and passive glomerular 
filtration (kidney)

 This appears to work better for 
pharmaceuticals than other 
chemicals:
 ToxCast chemicals are 

overestimated

 Non-pharmaceuticals may be 
subject to extrahepatic metabolism 
and/or active transport
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CvTdb:  An In Vivo TK Database

 EPA has developed a public database of concentration 
vs. time data for building, calibrating, and evaluating TK 
models

 Curation and development is ongoing, but to date 
includes:
 198 analytes (EPA, National Toxicology Program, 

literature)
 Routes: Intravenous, dermal, oral, sub-cutaneous, 

and inhalation exposure

 Standardized, open-source curve fitting software 
invivoPKfit used to calibrate models to all data:

43

https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Sayre et al. (2020)

https://github.com/USEPA/CompTox-PK-CvTdb
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Testing Predictions 
with CvTdb

IVIVE for
Risk Prioritization

Conclusions

 Toxicokinetics links exposure with 
internal concentrations

 Physiologically-based toxicokinetic 
(PBTK) models allow extrapolation, 
including in vitro-in vivo extrapolation 
(IVIVE)
 PBTK models can be generic or bespoke

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

Generic models allow for verification of model implementation
High throughput toxicokinetics (HTTK) allow in vitro parameterization of generic PBTK models
 Comparing model predictions for chemicals with in vivo data allows estimation of confidence 

in predictions for chemicals without in vivo data
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