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• NSSS appears to be a fairly-representative 
subset of TSCA (Figure 1)

• NSSS is as similar to TSCA as TSCA is to itself, 
and more similar to TSCA than to random 
subtrees of comparable size simulating the TSCA 
subtree (Table 1)

• Random trees simulating the NSSS subtree are 
not as similar to the TSCA subtree as the real 
NSSS subtree is (Table 1)

• Jaccard similarity explores the structure of the 
tree based on path lengths while the 
information content-based similarity measures 
explore the local structure of the tree as well. 

• Heatmap: Identify which classes represented by 
the TSCA associated labels are better/worse 
represented by NSSS associated labels (Figure 3)

• Tree-based visualizations, similarity measures, 
and ClassyFire provide useful tools for 
analyzing the domain of applicability

Methods

• Biosolids (treated sewage sludge) are applied to land 
or disposed of in landfills

• Chemicals in biosolids may enter food or water 
through agriculture and landfill leaching, or contact 
humans through other pathways

• Need for risk-based screening & prioritization of 
biosolids chemical contaminants — but data gaps 
make it difficult

• Plan: develop a high-throughput machine learning 
consensus model to predict chemical concentrations 
in biosolids

• Training data: National Sewage Sludge Survey 
(NSSS) monitoring data (744 chemicals)

• Prediction set: TSCA Inventory (68k chemicals) [1]
• Domain of applicability: How well does NSSS 

chemical space represent TSCA chemical space (or 
chemical space of other prediction sets)? 

• Eventually, use domain of applicability findings to 
guide model design and training.

• Chemical space characterized using ClassyFire & 
ChemOnt [2]

• Structure-based classification 
• “Tree of life” hierarchical ontology: kingdom, 

superclass, class, subclass, …
• Visualize chemical space using tree-based 

visualizations [3-10]
• Quantify & visualize similarity of TSCA and NSSS 

chemicals
• Similarity of ClassyFire classifications, rather than 

similarity of structures (Figure 2 & Figure 4)
• Leverage ChemOnt taxonomy structure to 

calculate information content (Box 1; Figure 5)
• Calculate established similarity measures for tree-

based ontologies (Jaccard, Resnik, Lin, Jiang-
Conrath) [11-15] (Figure 4, Figure 5)

• Heatmap visualization of similarity [16] (Figure 3)

Figure 1. Full ChemOnt tree. Labels color-coded according to 
representation by classifications associated to TSCA (green), 
NSSS (orange), both (blue), or neither (gray). Superclasses are 
labeled (outer arcs).

Table 1. Average pairwise similarity of labels in Tree1 vs. Tree2: Jaccard, Resnik, Lin, and Jiang and Conrath 
similarity measures. Random trees: average over n = 100 random trees, each with the same number of tips as 
NSSS or TSCA.

Figure 2. Jaccard similarity of ClassyFire classifications based on "ancestry": sets of 
labels on each path from root to tip. 

A: recent divergence and high similarity. 
B: distant divergence and low similarity.

Jaccard Similarity = 0.71 Jaccard Similarity = 0.14
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NSSS Tip Labels

Figure 3. Heatmap of pairwise Jaccard similarities for NSSS vs. TSCA tip 
labels. Details: Chemical classes represented by two heatmap blocks and 
by tip dots in tree diagrams. On the left, an example of low similarity; on 
the right, and example of greater similarity.
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Figure 4. Jaccard similarity of two tips 
(orange). Shared ancestry (purple) is 
length 5, while each full ancestry is 

length 6. 
Jaccard similarity =

(length of intersect) / (length of union) 
= 5/(6 + 6 – 5) = 5/7 ≈ 0.71

Tree1 Tree2 Jaccard Resnik Lin Jiang and Conrath

TSCA TSCA 0.12 0.046 0.050 0.13

NSSS NSSS 0.17 0.063 0.077 0.24

TSCA NSSS 0.14 0.046 0.054 0.17

Random “TSCA” Random “TSCA” 0.12 0.042 0.046 0.11

Random “NSSS” Random “NSSS” 0.13 0.047 0.055 0.17

TSCA Random “NSSS” 0.13 0.041 0.046 0.14

NSSS Random “TSCA” 0.13 0.042 0.048 0.16

Box 1: Information content (IC)

←Figure 5. A tree for a three-letter word 
with ‘x’ as the second letter. The IC of the 
node labelled ‘ax_’ is greater than the 
information content of the node labelled 
‘ox_’ because it has fewer descendants and 
thus carries more information about the 
identity of the word.

• Quantifies information carried by 
a label in a tree: fewer 
descendants = higher IC (Figure 5)

• IC(label) = 1 - log(1+ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙) )
log(𝑁𝑁)

, 

where |desc(label)| is the 
number of descendants of the 
label and N is the total number of 
nodes and tips in the tree.

• Tip IC = 1; root IC = 0
• Resnik, Lin, and Jiang and Conrath 

similarity measures all use IC.
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