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Motivation

Journal of Exposure Science & Environmental Epidemiology www.nature.com/jes
* Recently developed the R package “bayesmarker” (Stanfield et al, 2022;
https://github.com/USEPA/CompTox-HumanExposure-bayesmarker)
ARTICLE M) Check for updates
 Employs Bayesian methodology to infer parent chemical exposures from Bayesian inference of chemical exposures from NHANES urine
biomonitoring data (concentrations of urinary metabolites) biomonitoring data

Zachary Stanfield (', R. Woodrow Setzer', Victoria Hull', Risa R. Sayre', Kristin K. Isaacs’ and John F. Wambaugh'™

* Urinary biomonitoring data plays an important role in exposure science
(GAO, 2009; NRC 2006; NRC, 2007; NRC, 2009)

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022

 Some research uses include: Stage 3: Propagate
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* PK/PBPK model evaluation Concentration Data
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Understanding Urinary Excretion

Afferent arteriole

* There are 3 main steps in the process of urine elimination (Boeniger et al, 1993)

Efferent arteriole

1. Glomerular filtration: substances are filtered in the glomerulus capsule into
the renal tubule

Glomerular
capillares

2. Active transport: substances are actively transported between the blood
and the filtrate in the renal tubule (sometimes called secretion when
leaving the blood)

Bowman's capsule

Glormerular filiration

3. Passive transport: substances diffuse between the blood and the filtrate in
the renal tubule (sometimes called reabsorption when leaving the filtrate)

Peritubular capillary

Tubular reabsorption

Tubuwlar secretion

Renal | ¥
tubule ———

Variable
flow rate

Urine Filtered blood

https://www.pharmacy180.com/article/tubular-secretion-3673/
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Understanding Urinary Excretion (Cont.)

 There are 3 main steps in the process of urine elimination (Boeniger et al, 1993) Filtration
1. Glomerular filtration: substances are filtered in the glomerulus capsule into the 4 4
renal tubule
2. Active transport: substances are actively transported between the blood and the _ / \
filtrate in the renal tubule (sometimes called secretion when leaving the blood) %
3. Passive transport: substances diffuse between the blood and the filtrate in the % X X
renal tubule (sometimes called reabsorption when leaving the filtrate) - § —
* Due to our knowledge about renal elimination, we hypothesize that: g R R
1. Substances undergoing glomerular filtration should follow creatinine §
concentration (directly) and urine output (indirectly)
2. Substances undergoing passive diffusion should be independent of creatinine
concentration and urine output
* A number of studies (Boeniger et al, 1993; Watanabe et al, 2019) have suggested that Creatinine ' '
some portion of substances belong to an “intermediate” class, which isn’t as well Concentration Urine Output

defined as the filtration and diffusion groups
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Project Goals

e Test hypotheses of relationships between chemical concentration, creatinine concentration, and urine output
for different kidney elimination routes

* Apply to the CDC’s National Health and Nutrition Examination Survey (NHANES)
e https://www.cdc.gov/nchs/nhanes/index.htm

e Combine data from the NHANES continuous survey (9 two-year cohorts spanning 1999-2016)
* Cluster metabolites based on correlation between these 3 measures
e Characterize these clusters by some criteria

e Build a high-throughput model to predict the primary kidney route of elimination for thousands of chemicals
e Use clustering of NHANES chemicals as the training data in a classification model
e Use structural or molecular features that are easily obtained or calculated for most chemicals
* Apply model to a large set of chemicals of interest to provide recommendations on how to handle chemicals
for various approaches in exposure reconstruction and/or PBPK model evaluation
e Assess applicability of model to this large chemical set

#HISES2022LIBSON
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NHANES Data

Analysis Pipeline

= J7brows
* (Cohorts 1999-2000 to
2015-2016

* 167 Metabolites

* 1rowforeach
unique NHANES file
in the Codes Table

CodesTable

(Metabolites, NHANES
Code, NHANES file,

Weights Table

(Cohort, NHANES File
and code, BWT File,

Domain of Applicability Assessment

* Approaches: nearest neighbor

LISBON, PORTUGAL

Cohort, Units) DEMO File, Urine File) Predict
* TSCA Active Chemical Set (19,372 chemicals
P Dat with Mordred descriptors) Data
SIS A I ELE A4 * Classify primary clearance route
* Read in raw NHANES datafiles (laboratory,
bodyweight, demographics) . Methods
*  Normalize units Build Model
* Combine participant survey data across all cohorts el e o e BT e e e ) Software
* Processed dataincludes metabolite concentration, « 892 features with NA for at least 1 metabolite
creatinine concentration, and urine output « 186 features with the same value for all
metabolites
/ \ * 535 final feature set
Missing Data , — Complete Data ™,
*  Nourine velume/time data * CreatCor = Cor(metabolite conc. , creatinine conc.)
before 2009 *  QutputCor= Cor(metabolite conc. , urine output) ) .
* Additional diffusion metabolites if * 132 metabolites with all data Obtain De criptors Mordred a ol
* No urine output data «  Obtain Mordred Software Moriwaki et
e 0.2 <CreatC 0.2 0T aamy al., 2018
S Tealors descriptors (Command
* 32 metabolites Cluster Data e + 145 metabolites with o | linevi
_ L Mordred descriptors Python)
*  Kmeans clustering metabolitesinto 3 classes « 1613 features
* Diffusion (34)
* Filtration (54)
* Intermediate (44) Enrichment
Chemical
* Assess enrichment for Class
Clustered Data l chemical class within Annotation
. = & 7
* 164 metabolites: Diffusion (66), Filtration (54), each metabolite (NHANES
Intermediate (44) elimination group Reports; 19
Classes)
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Observing Correlations

Correlation Between Metabolite and Creatinine Concentration

30
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|

o | Filtration: follow creatinine concentration
(directly) and urine output (indirectl
. I I | |
0.0 0.2 04 0.6
cors_creat
Correlation Between Metabolite Concentration and Urine Outpu
Passive diffusion: independent of creatinine

o | concentration and urine outpu
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Clustering Metabolites by Kidney Elimination Route

Correlation Between Metabolite and Creatinine Concentration

Correlation Between Metabolite Concentration and Urine Output

Kmeans Clustering of NHANES Metabolites Based on Correlation of
Metabolite Concentration with Creatinine Concentration and Urine OQutput

34
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5
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Correlation with Creatinine Concentration (scaled)

LISBON, PORTUGAL

*32 additional metabolites
added to the diffusion
group. Missing urine output
data but had very small
correlation with creatinine
concentration.
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Analysis Pipeline

NHANES Data

= J776rows * 1rowfor each
*+  Cohorts 1999-2000 to unique NHANES file
2015-2016 in the Codes Table . : o e
i S Domain of Applicability Assessment
Codes Table Weights Table * Approaches: nearest neighbor

(Metabolites, NHANES (Cohort, NHANES File

Code, NHANES file, and code, BWT File,

Cohort, Units) DEMO File, Urine File) Predict

* TSCA Active Chemical Set (19,372 chemicals
with Mordred descriptors) Data
* Classify primary clearance route

Process Data

* Read in raw NHANES datafiles (laboratory,
bodyweight, demographics) . Methods
*  Normalize units Build Model
: ([iomb|nedpzrctlc[pa?tjurveytda;[alicross all (;ohtc_)rts * Random forest (standard and y-randomization) Software
roce_ss_e ata inci _es metd 0_' econcentration, * 892 features with NA for at least 1 metabolite
creatinine concentration, and urine output .
* 186 features with the same value for all
metabolites
* 535 final feature set
Missing Data Complete Data
*  Nourine velume/time data * CreatCor = Cor(metabolite conc. , creatinine conc.)
before 2009 *  QutputCor= Cor(metabolite conc. , urine output) ) .
* Additional diffusion metabolites if * 132 metabolites with all data Obtain Descriptors Mordred o
* No urine output data «  Obtain Mordred Software Moriwaki et
+ 0.2 < CreatCor<0.2 tein Mordre (Command | 22018
- - descriptors / _ :
32 metabolites Cluster Data Ik + 145 metabolites with line via
) - Mordred descriptors Python)
*  Kmeans clustering metabolitesinto 3 classes « 1613 features
* Diffusion (34)
* Filtration (54)
* Intermediate (44) Enrichment
Chemical
* Assess enrichment for Class
Clustered Data l b chemical class within Annotation
. = & 7
* 164 metabolites: Diffusion (66), Filtration (54), é//,’—”’ each metabolite (NHANES
Intermediate (44) elimination group Reports; 19
Classes)
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Chemical Class Enrichment in Kidney Elimination Route Clusters

Enrichment determined by the hypergeometric test using the phyper() function of the stats R package (R Core Team, 2013).

Diffusion Intermediate Filtration
Chemical 4 in #in #in 4 in #in #in 4 in #in Hin
Class Route Class Classin P-value Chemical Class Route Class Classin P-value Chemical Class Route Class Class in P-value
Total Route Total Route Total Route
Personal
Herbicides 66 7 6 0.0174 Care/Consumer 44 13 8 0.0066 Phthalates 54 16 10 0.0106
Product
Sulfonyl Urea v Eille
. y 66 17 17 4.702e-08 Phytoestrogens 44 6 6 0.0003 Organic 54 22 13 0.0063
Herbicides
Compounds
Organochlorine Polycyclic
Fungicides 66 3 3 0.0634 g_ : 44 2 2 0.0708 Aromatic 54 10 9 0.0002
Pesticides
Hydrocarbons
Metals 54 20 11 0.0258
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Analysis Pipeline

NHANES Data

» 776rows * 1rowfor each
*+  Cohorts 1999-2000 to unique NHANES file
2015-2016 in the Codes Table . ; ol
i S Domain of Applicability Assessment
CodesTable Weights Table * Approaches: nearest neighbor
(Metabolites, NHANES (Cohort, NHANES File
Code, NHANES file, and code, BWT File,
Cohort, Units) DEMO File, Urine File) Predict
* TSCA Active Chemical Set (19,372 chemicals
P Dat with Mordred descriptors) Data
SIS A I ELE * Classify primary clearance route
* Read in raw NHANES datafiles (laboratory, A R
bodyweight, demographics) - Methods
*  Normalize units Build Model \
* Combine participant survey data across all cohorts el e o e BT e e e ) Software
* Processed dataincludes metabolite concentration, « 892 features with NA for at least 1 metabolite
creatinine concentration, and urine output « 186 features with the same value for all
metabolites
* 535 final feature set
Missing Data Complete Data
*  Nourine velume/time data * CreatCor = Cor(metabolite conc. , creatinine conc.)
before 2009 *  QutputCor= Cor(metabolite conc. , urine output) : ] -
* Additional diffusion metabolites if * 132 metabolites with all data Obtain De criptors Mordred a ol
* No urine output data «  Obtain Mordred Software Moriwaki et
+ 0.2 < CreatCor < 0.2 tein Mordre (Command | pl 2018
- 5 descriptors / mm:
32 metabolites Cluster Data 4 * 145 metabolites with line via
_ L Mordred descriptors Python)
*  Kmeans clustering metabolitesinto 3 classes « 1613 features
* Diffusion (34)
* Filtration (54)
* Intermediate (44) Enrichment
Chemical
* Assess enrichment for Class
Clustered Data l chemical class within Annotation
. = & 7
* 164 metabolites: Diffusion (66), Filtration (54), each metabolite (NHANES
Intermediate (44) elimination group Reports; 19
Classes)
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Build Model

* Trained a Random Forest model using the randomForest R package (RColorBrewer & Liaw, 2018)

Standard Model Data

 Mordred feature filtering: A A
e Started with 1613 features 2 [ 2
* Dropped all features having a NA for any training chemical (892 descriptors) i E
* Dropped all features having the same value for all training chemicals (186 descriptors) - = Shuttie
e Resulted in a final model of 535 features i i oo
* Balancing classes: i P i
 Sampled training instances from each route cluster where the sample size was set to the c c
number of chemicals in the smallest cluster e e -
Standard Model Overall OOB Error = 34.48% Y-Randomized Model Overall OOB Error = 75.86%
Diffusion Filtration Intermediate Class Error Diffusion Filtration Intermediate Class Error
Diffusion 41 5 11 0.2807 Diffusion 20 27 10 0.6491
Filtration 2 34 13 0.3061 Filtration 27 10 12 0.7959
Intermediate 9 10 20 0.4872 Intermediate 22 12 5 0.8718

#HISES2022LIBSON
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Analysis Pipeline

NHANES Data

= J776rows * 1rowfor each

*+  Cohorts 1999-2000 to unique NHANES file
2015-2016 in the Codes Table

* 167 Metabolites
Codes Table Weights Table

(Metabolites, NHANES (Cohort, NHANES File

Code, NHANES file, and code, BWT File,

Cohort, Units) DEMO File, Urine File)

Process Data

* Read in raw NHANES datafiles (laboratory,
bodyweight, demographics)

*  Normalize units

*  Combine participant survey data across all cohorts

*  Processed dataincludes metabolite concentration,
creatinine concentration, and urine output

Missing Data

Complete Data

No urine volume/time data
before 2009
Additional diffusion metabolites if
* No urine output data
* 0.2 <CreatCor<0.2
32 metabolites

Domain of Applicability Assessment

Approaches: nearest neighbor

A

Predict

TSCA Active Chemical Set (19,372 chemicals
with Mordred descriptors)
Classify primary clearance route

A

Build Model

Random forest (standard and y-randomization)
892 features with NA for at least 1 metabolite
186 features with the same value for all
metabolites

535 final feature set

* CreatCor = Cor(metabolite conc. , creatinine conc.)
*  QutputCor= Cor(metabolite conc. , urine output)
* 132 metabolites with all data

Cluster Data

*  Kmeans clustering metabolitesinto 3 classes
* Diffusion (34)
* Filtration (54)
* Intermediate (44)

Clustered Data l

* 164 metabolites: Diffusion (66), Filtration (54),
Intermediate (44)

Obtain Descriptors

* (Obtain Mordred

Mordred descriptors
* 1613 features

Enrichment

* Assess enrichment for
chemical class within
each metabolite
elimination group

LISBON, PORTUGAL

descriptors /
* 145 metabolites with

Data
Methods
Software
Mordred : X
Software Moriwaki et
line via
Python)
Chemical
Class
Annotation
(NHANES
Reports; 19
Classes)
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High-Throughput Predictions

* List of Toxic Substances Control Act (TSCA) Active Chemicals obtained from the EPA’s CompTox Chemicals Dashboard
(https://comptox.epa.gov/dashboard)

e TSCA_ACTIVE_NCTI _0221 list with 33599 chemicals
e After obtaining SMILES and calculating Mordred descriptors, 19372 chemicals available for prediction

* Assess domain of applicability in the context of these predictions

* Use a nearest neighbor approach with similarity threshold as first described in Tropsha & Golbraikh, 2007

Route # Predicted (% of Total) # In Domain (% of Route) # Out Domain (% of Route)
Diffusion 13986 (72.20%) 10422 (74.52%) 3564 (25.48%)
Filtration 1682 (8.68%) 1339 (79.61%) 343 (20.39%)
Intermediate 3364 (19.91%) 2214 (60.43%) 1450 (39.57%)

#HISES2022LIBSON



https://comptox.epa.gov/dashboard

INCTERNATLONAIS SOCIETY OF EXPOSURE SCIENCE — 2022 ANNURAT SNFE E "TRRN G LISBON, PORTUGAL

Future Work

e Additional analyses:

* Collect more NHANES data (most recent cohorts will have more metabolites all with complete
urine metrics)

* Incorporate additional features into the predictive model
* Model evaluation in the form of two case studies using chemicals clustered/predicted to undergo
passive diffusion as primary route of urinary elimination:

1. PBPK evaluation: run a PBTK model with GFR correction turned off and see if agreement with
in vivo assay data improves

2. Exposure reconstruction: estimate exposure intake rates based on urine metabolite
concentrations; compare exposure ranges with GFR correction turned on and off

#HISES2022LIBSON
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Future Work: Case Study 1

Journal of Statistical Software

Information on Mission Information for Authors Style Guide Volumes ~ About =

https://CRAN.R-
project.org/package=httk

httk: R Package for High-Throughput
Toxicokinetics

Home / Archives / Vaol.73(2017)

Robert G. Pearce. R. Woodrow Setzer, Cory L. Strope. Nisha S. Sipes. John F. Wambaugh

In Vitro-In Vivo Extrapolation (IVIVE)

https://qithub.com/USEPA/CompTox-ExpoCast-invivoPKfit

Normalization of dose

PBPK models
Rodents: in vivo >

Humans: in vivo

Extrapolation
using PD and
PBPK models

Testable predictions

Comparative testing
Rodents: in vitro + | Humans: in vitro

expired air

3817

¥

Concentration vs Time
Database (CvTdb)

442
http://github.com/USEPA/ bl
CompTox-PK-CvTdb l

Other: 12 7

feces 4 1
urine 59 14

LISBON, PORTUGAL

Comparison to in vivo human and rat data for 41 volatile
organic compounds under 142 exposure scenarios using a
generic inhalation model (httk) and CvTdb

Comparison to in vivo rat data for 45 chemicals using
httk and IVIVE methods

1:::“-E— o

j C
= E
FU: E
E 10° 4 2.31
9 3 5
<< — S
- = "
g F £
© 1
E -%: E Species
E C Q0.0 — Swverall
“cj e T i
S 2 :
= =T =
c 10 T A , ]

: SE = 3.8, R“=0.62 =

=

Illll,l4 IIII[I_‘ IIII|,|4 IIII[[J IIII,|,|4 IIII]]J I”I.|.|.4_l ;:’___,-*"J-. =
1':}_2 1 -”]2 1[:'4 1
In vitro predicted AUC (mg*h/L)

Regression slope: 0.46
Regression R*2: 0.45
Regression RMSE: 0.76

RMSE (vs. Identity); 1.11

% Missing:D.93%

® iv _ ® Other
Chemical a3 3

po Pharmaceutical Lng[Ei;nuIatud Eununtratiﬁns}

Wambaugh et al, 2018 Linakis et al, 2018

Route
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Future Work: Case Study 2

Journal of Exposure Science & Environmental Epidemiology www.nature.com/jes
e Revisit our original motivation, the bayesmarker ARTICLE Y r—
package for calculating parent chemical intake rates Bayesian inference of chemical exposures from NHANES urine

biomonitoring data

Zachary Stanfield (', R. Woodrow Setzer, Victoria Hull'"% Risa R. Sayre', Kristin K. Isaacs’ and John F. Wambaugh'®

* Analysis plan:

Y Reru n a ” meta bOIiteS CI UStered into the paSSive This is a US. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022
diffusion primary kidney elimination group through
bayesmarker without creatinine correction Stage 3: Propagate
" d Exposure to Parents Using
 Compare exposure estimates for parent chemicals | Metabolism Stoichiometry
Raw Metabolite
with and without correction Concentration Data

Stage 2: Convert to
Units of Exposure Using
Steady-State Assumption

-
Stage 1: Estimate
g . (mg/ke/day); = me:  _ Screatinine
geometric means BW Kg gcreatinine day
Simple Toxicokinetic
Model
LoD

=]
w
)

Assume logNormal(u, 8) Products
Distribution 1

Use Data Censoring for Parent E 2 Assume Mass
Concentrations<LOD Balance

3

e
]
w

Probability Density
=1 S =1
- w L8]

=
=1
@

(mg/kg/day);

0 led de7  leb deS ded  de3 d1ed (mg/kg/day) parent = MWParentE Pparenti
i MW;

Concentration (ug/ke/day)
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Thank Youl!
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