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Motivation
• Recently developed the R package “bayesmarker” (Stanfield et al, 2022; 

https://github.com/USEPA/CompTox-HumanExposure-bayesmarker)

• Employs Bayesian methodology to infer parent chemical exposures from 
biomonitoring data (concentrations of urinary metabolites)

• Urinary biomonitoring data plays an important role in exposure science 
(GAO, 2009; NRC 2006; NRC, 2007; NRC, 2009)

• Some research uses include: 
• Exposure reconstruction 
• PK/PBPK model evaluation

• During exposure calculation, we adjust all metabolite concentrations 
based on urine creatinine 

• There is no general guidance on how to process urinary metabolite 
concentrations (Middleton et al, 2016; Aylward et al, 2012)

• Many approaches apply creatinine correction for all chemicals by 
default (assumes same kidney elimination route)

• However, the elimination pathway is more complex than this for some 
substances 

https://github.com/USEPA/CompTox-HumanExposure-bayesmarker
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Understanding Urinary Excretion

• There are 3 main steps in the process of urine elimination (Boeniger et al, 1993)
1. Glomerular filtration:  substances are filtered in the glomerulus capsule into 

the renal tubule
2. Active transport:  substances are actively transported between the blood 

and the filtrate in the renal tubule (sometimes called secretion when 
leaving the blood)

3. Passive transport:  substances diffuse between the blood and the filtrate in 
the renal tubule (sometimes called reabsorption when leaving the filtrate)

https://www.pharmacy180.com/article/tubular-secretion-3673/

Variable 
flow rate
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Understanding Urinary Excretion (Cont.)

• There are 3 main steps in the process of urine elimination (Boeniger et al, 1993)
1. Glomerular filtration:  substances are filtered in the glomerulus capsule into the 

renal tubule
2. Active transport:  substances are actively transported between the blood and the 

filtrate in the renal tubule (sometimes called secretion when leaving the blood)
3. Passive transport:  substances diffuse between the blood and the filtrate in the 

renal tubule (sometimes called reabsorption when leaving the filtrate)

• Due to our knowledge about renal elimination, we hypothesize that:
1. Substances undergoing glomerular filtration should follow creatinine 

concentration (directly) and urine output (indirectly)
2. Substances undergoing passive diffusion should be independent of creatinine 

concentration and urine output 
• A number of studies (Boeniger et al, 1993; Watanabe et al, 2019) have suggested that 

some portion of substances belong to an “intermediate” class, which isn’t as well 
defined as the filtration and diffusion groups
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Project Goals

• Test hypotheses of relationships between chemical concentration, creatinine concentration, and urine output 
for different kidney elimination routes
• Apply to the CDC’s National Health and Nutrition Examination Survey (NHANES) 

• https://www.cdc.gov/nchs/nhanes/index.htm
• Combine data from the NHANES continuous survey (9 two-year cohorts spanning 1999-2016)

• Cluster metabolites based on correlation between these 3 measures
• Characterize these clusters by some criteria

• Build a high-throughput model to predict the primary kidney route of elimination for thousands of chemicals
• Use clustering of NHANES chemicals as the training data in a classification model
• Use structural or molecular features that are easily obtained or calculated for most chemicals

• Apply model to a large set of chemicals of interest to provide recommendations on how to handle chemicals 
for various approaches in exposure reconstruction and/or PBPK model evaluation
• Assess applicability of model to this large chemical set

https://www.cdc.gov/nchs/nhanes/index.htm
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Analysis Pipeline

Moriwaki et 
al., 2018
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Observing Correlations
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Filtration: follow creatinine concentration 
(directly) and urine output (indirectly)

Passive diffusion: independent of creatinine 
concentration and urine output 
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Clustering Metabolites by Kidney Elimination Route

*32 additional metabolites 
added to the diffusion 

group.  Missing urine output 
data but had very small 

correlation with creatinine 
concentration.
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Analysis Pipeline

Moriwaki et 
al., 2018
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Chemical Class Enrichment in Kidney Elimination Route Clusters

Diffusion

Chemical 
Class

# in 
Route

# in 
Class 
Total

# in 
Class in 
Route

P-value

Herbicides 66 7 6 0.0174

Sulfonyl Urea 
Herbicides 66 17 17 4.702e-08

Fungicides 66 3 3 0.0634

Intermediate

Chemical Class # in 
Route

# in 
Class 
Total

# in 
Class in 
Route

P-value

Personal 
Care/Consumer 
Product 

44 13 8 0.0066

Phytoestrogens 44 6 6 0.0003

Organochlorine 
Pesticides 44 2 2 0.0708

Filtration

Chemical Class # in 
Route

# in 
Class 
Total

# in 
Class in 
Route

P-value

Phthalates 54 16 10 0.0106

Volatile 
Organic 
Compounds

54 22 13 0.0063

Polycyclic 
Aromatic 
Hydrocarbons

54 10 9 0.0002

Metals 54 20 11 0.0258

Enrichment determined by the hypergeometric test using the phyper() function of the stats R package (R Core Team, 2013).
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Analysis Pipeline

Moriwaki et 
al., 2018
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Build Model

• Trained a Random Forest model using the randomForest R package (RColorBrewer & Liaw, 2018)

• Mordred feature filtering:
• Started with 1613 features
• Dropped all features having a NA for any training chemical (892 descriptors)
• Dropped all features having the same value for all training chemicals (186 descriptors)
• Resulted in a final model of 535 features

• Balancing classes:
• Sampled training instances from each route cluster where the sample size was set to the 

number of chemicals in the smallest cluster

Diffusion Filtration Intermediate Class Error

Diffusion 41 5 11 0.2807

Filtration 2 34 13 0.3061

Intermediate 9 10 20 0.4872

Standard Model Overall OOB Error = 34.48%

Diffusion Filtration Intermediate Class Error

Diffusion 20 27 10 0.6491

Filtration 27 10 12 0.7959

Intermediate 22 12 5 0.8718

Y-Randomized Model Overall OOB Error = 75.86%
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Analysis Pipeline

Moriwaki et 
al., 2018
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High-Throughput Predictions

Route # Predicted (% of Total) # In Domain (% of Route) # Out Domain (% of Route)

Diffusion 13986 (72.20%) 10422 (74.52%) 3564 (25.48%)

Filtration 1682 (8.68%) 1339 (79.61%) 343 (20.39%)

Intermediate 3364 (19.91%) 2214 (60.43%) 1450 (39.57%)

• List of Toxic Substances Control Act (TSCA) Active Chemicals obtained from the EPA’s CompTox Chemicals Dashboard 
(https://comptox.epa.gov/dashboard)

• TSCA_ACTIVE_NCTI_0221 list with 33599 chemicals

• After obtaining SMILES and calculating Mordred descriptors, 19372 chemicals available for prediction

• Assess domain of applicability in the context of these predictions 

• Use a nearest neighbor approach with similarity threshold as first described in Tropsha & Golbraikh, 2007

https://comptox.epa.gov/dashboard
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Future Work
• Additional analyses:

• Collect more NHANES data (most recent cohorts will have more metabolites all with complete 
urine metrics)

• Incorporate additional features into the predictive model

• Model evaluation in the form of two case studies using chemicals clustered/predicted to undergo 
passive diffusion as primary route of urinary elimination:
1. PBPK evaluation:  run a PBTK model with GFR correction turned off and see if agreement with 

in vivo assay data improves
2. Exposure reconstruction:  estimate exposure intake rates based on urine metabolite 

concentrations; compare exposure ranges with GFR correction turned on and off



I N T E R N A T I O N A L  S O C I E T Y  O F  E X P O S U R E  S C I E N C E  — 2 0 2 2  A N N U A L  M E E T I N G  L I S B O N ,  P O R T U G A L

#ISES2022LIBSON

Future Work:  Case Study 1

Comparison to in vivo rat data for 45 chemicals using 
httk and IVIVE methods

Comparison to in vivo human and rat data for 41 volatile 
organic compounds under 142 exposure scenarios using a 

generic inhalation model (httk) and CvTdb

In Vitro-In Vivo Extrapolation (IVIVE)
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Concentration vs Time 
Database (CvTdb)
http://github.com/USEPA/
CompTox-PK-CvTdb

https://CRAN.R-
project.org/package=httk

Wambaugh et al, 2018 Linakis et al, 2018

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
http://github.com/USEPA/CompTox-PK-CvTdb
https://cran.r-project.org/package=httk
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Future Work:  Case Study 2

• Revisit our original motivation, the bayesmarker
package for calculating parent chemical intake rates

• Analysis plan:
• Rerun all metabolites clustered into the passive 

diffusion primary kidney elimination group through 
bayesmarker without creatinine correction

• Compare exposure estimates for parent chemicals 
with and without correction
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Thank You!
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