


Identifying Androgen Disrupting Chemical Metabolites using Intracellular **Xenobiotic mRNA Transfection Method**

1. Oak Ridge Institute for Science Education (ORISE), Oak Ridge, TN; 2. Rapid Assay Development Branch (RADB), ORD, U.S. EPA, Durham, NC

Background

- A major limitation of existing high-throughput assays is their lack of endogenous cellular metabolism and subsequent inability to identify metabolically-induced changes in toxicity.
- As such, our laboratory developed an intracellular mRNA transfection method to confer Cytochrome P450 (CYP) metabolism to cell-based HTS assays (DeGroot et al. 2018).
- Therefore, we sought to use our mRNA transfection method on a novel androgen receptor androgen receptor.
- Identification of bio- activated or deactivated metabolites can better characterize a compound's interaction with the AR pathway, leading to improved hazard estimates.

Experimental Design

with 50ng CYP/control mRNA and allowed to acclimate for 6hr to promote translation. Following, chemicals/controls were administered. 10nM R1881 was used as AR maximal positive control for endpoint and Resazurin (with 2hr incubation) was added to evaluate the post-hoc viability endpoint.

> **U.S. Environmental Protection Agency** Office of Research and Development

Evan Brown^{1,2}, Daniel Hallinger², Steve Simmons²

[compound] log 10 (µM)

- Both CYP-mediated activations and deactivations were observed.
- **CYP metabolism was a contributing factor to hit-call decisions.** Hydroxyprogesterone caproate was metabolized by multiple CYPs, but rendered completely inactive (non-hit) in the AR2 antagonist assay by CYP3A4 (plot L). Metabolic changes in potency and efficacy can impact future chemical prioritization.
- of the intracellular xenobiotic mRNA transfection method for retrofitting an HTS assay with CYP
- identify CYP-mediated changes in both AR agonists and antagonists.

Disclaimer: The views expressed in this poster are those of the author[s] and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Evan C. Brown I brown.evan@epa.gov I 980-395-2201

re observed.		Micromolar
		concentrations are shown
		in log 10 scale along the
		x-axis. Response is
		shown as % AR Inhibition
		(of maximal positive
		control) in the downward
		direction. Dose-response
		hill curves were fit using
Biogroup		the tcpl lite R script. Grey
Ο	No RNA	and black curves indicate
0	+ Bgal mRNA	negative (non-CYP)
0	+ CYP mRNA	controls and red curves
		correspond to the
	Hit-call	associated CYP column
	Threshold	header. The red dashed
\bigstar	Bio-activation	line specifies the
\checkmark	Bio-deactivation	threshold used to define
		AR antagonist activity.
		Abbreviations: Androgen
		Receptor (AR), Cytochrome
		P450 (CYP), micromolar

| (μM)