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Figure 2. Tiered testing framework for hazard characterization. Tier 1 uses both chemical structure and broad coverage, high content assays across multiple cell types
for comprehensively evaluating the potential effects of chemicals and grouping them based on similarity in potential hazards. For chemicals from Tier 1 without a de-
fined biological target / pathway, a quantitative point-of -departure for hazard is estimated based on the absence of biological pathway or cellular phenotype perturba-
tion. Chemicals from Tier 1 with a predicted biological target or pathway are evaluated Tier 2 using targeted follow-up assays. In Tier 3, the likely tissue, organ, or
organism-level effects are considered based on either existing adverse outcome pathways (AOP) or more complex culture systems. Quantitative points-of-departure
for hazard are estimated based on the AOP orresponses in the complex culture system.
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< EPA

m&uironmentnl Health Perspectives

HOME CURRENTISSUE ARCHIVES COLLECTIONS v Hi3¥fi¥ v AUTHORS v ABOU

Brief Communication ) Open Arcess

A Chemical Category-Based Prioritization
Approach for Selecting 75 Per- and
Polyfluoroalkyl Substances (PFAS) for Tiered
Toxicity and Toxicokinetic Testing

Grace Patlewicz, Ann M. Richard, Antany J. Williams, Christopher M. Grulke, Reeder Sams,
Jason Lambert, Pamela D. Noyes, Michael ). DeVito, Ronald N. Hines, Mark Strynar,

Annette Guiseppi-Elie, and Russell 5. Thomas

Published: 11 January 2019 CID: 014501 | https://doi.org/10.1289/EHPA555

Selected 150 PFAS in two phases
representing 83 different
categories

* 9 categories with > 3
members

* Lots of singletons

Tony Williams, Ann Richard, Chris Grulke, and Chemical Curation Team

Selecting a Subset of PFAS for Tiered Toxicity and

Toxicokinetic Testing

Goals

* Generate data to support development and refinement of

categories and read-across evaluation

* Incorporate substances of interest to Agency

* Characterize mechanistic and toxicokinetic properties of the

broader PFAS landscape

Data collection: Maximiziﬂg Read-across

Capturing Structural Diversity
A

Pre-defined \ [/ \
structur: i_‘i‘f On Wkgrp-31 list: On EPA-PFAS list; Availability of EPA interest Characterizing the
categories Availability of in vivo data  Availability of in vivo data in vivo data in vivo data lacking PFAS Landscape
Step 0: Step 1. Select Step 2: Select Step 3: Select Step 4: Select Step 5: Select
Characterizing the substances from substances from substances from substances from substances from
PFAS library f:ategorles of greatest categories of interest to remaining categories categories of interest remaining
interest to the Agency the Agency with in vivo data to the Agency categories

/7
Agency interest
10

5

|5 structural categories|

+2 structural categories

¥

+6 structural categories™ |

*2 categories contained only 1
chemical, so were not included

|+5 structural categories |

o
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+10 structural categories|

Availability of in vivo dafa
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D, N N

9 substances: 13 substances

538?23153%?; 53 substances: 12 categories

6 categories 10 categories




o In Vitro-In Vivo Extrapolation (IVIVE)
EPA to Inform NAM Dosimetry

NAMs - Advantages

in vitro assays .
o Potential dose: :’\
human-specific .
Ingested, inhaled,
relevant pathways : ;
applied to skin
Concentration-response 3

Incorporating in vitro data with
dosimetry key to linking to real-
world exposures

Point of departure estimation

H

EHH IIII '----i Internal dose: | .-
a = p Amount absorbed /
. B mlES = . . _.-F-*' I~
thousands of endpoints and available for /
thousands of chemicals = interaction
- {
|| - . )
| | ||

Harrill et al., in preparation B o

Carstens et al., in preparation — TSP EE—
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EPA Using Toxicokinetics (TK) and IVIVE
for Equivalent Dose Estimation

in vitro
POD

Reverse
Dosimetry

- . = AEDs to achieve
- plasma levels
Hepatocytes Hepatic Clearance p :

(Clint) Adm”'"stered equal toin VltrO

Renal Cl
g > vive [N
where GFR 6.7 L/hr

Concentration Dose (AED) (POD)
(mg/kg/day)
! ,L
' E_ Internal Blood } BER (Bioactivity:Exposure Ratio)
ﬁ -—> Concentrations A

(Csss Crmax)
Plasma Plasma Protein j oo Exp.osure
Binding (F,) Estimate
(mg/kg/day)

PFAS transporter data coming

in vitro toxicokinetic assays . , y
y TK parameters commonly used to evaluate bioaccumulative potential

Highly plasma bound compounds retained in body indefinitely (e.g., dioxin, PFOA, PFQOS)
High plasma protein binding + low/no hepatic clearance = highly bioaccumulative



wEPA TK Data Generation for PFAS

PFAS Plasma Protein Binding (PPB) Analyses

- Targeted methods successfully developed for 489 110 : in vitro plasma protein binding
- Method Comparison (Ultracentrifugation (UC) vs. Rapid Equilibrium Dialysis (RED))

- All PFAS analyzed in UC Assay; subset in RED; Stability in plasma monitored

Ultracentrifugation (UC) Rapid Equilibrium Dialysis

Methodologies e

RED assay: SIS S S

equilibrium required ~

UC assay: L2

centrifugation . TN —

.r_.l,j..r},\\x a
instead of =

membrane, minimal
non-specific binding E. =

Plasma PBS Plasma PBS

‘ T5 SAMPLE T= 1 h r T=4h r
Smeltz et al., submitted: PFAS Stock QC Evaluation ® chemical
fu, =fraction unbound in plasma Smeltz et al., submitted: PPB: 73 PFAS; UPLC-MS/MS & protein
AF= aqueous fraction Kreutz et al., in preparation: PPB, Hep Cl: 69 PFAS; GC-MS/MS

Crizer et al., in preparation: Hep Cl: ~70 PFAS; LC-MS/MS



PFAS Coverage in PPB Assays

73 Selected for LC-MS/MS:

PPB measures successful for 67
67 fell into 25 distinct groups,

16 possessing a minimum of two
structures

C chain length and per vs poly
analyses possible

73 Selected for GC-MS/MS:

PPB measures successful for 43

Coverage across 12 distinct
functional classes

Stability issues noted for several

Volatility an issue for some
groups

LC-MS/MS # GC-MS/MS #
PFAS PFAS

Perfluoroalkyl 21 |Fluorotelomer 10
carboxylates Alcohols
Perfluoroalkane 9 |Other Polyfluorinated | 10
sulfonates alcohols
Fluorotelomer 4 |Acrylates 12
carboxylates
Perfluoroalkyl ether 4 |Ethers esters and 10
carboxylates ethoxylates
Perfluoroalkyl 4 |Halides 9
polyether carboxylates
Perfluoroalkanoyl 4 |Amides 7
chlorides
Perfluoroalkane 4 |Amines 6
sulfonamides (FASASs)
Fluorotelomer 3 |Sulfur-containing 4
sulfonates
Fluorotelomer 2 |Silanes 2
phosphonic acids
Two other groups 2 |Alkanes 2




Number of Values

25

20+

15+

10

High Binding Noted Across Most PFAS

67 PFAS — analyzed by LC-MS/MS

Distribution Stiatistics
Mean: 0.0454
Median: 0.0049
75th Percentile: 0.0415
f 95th Percentile: 0.2690

J

- 50

- 25

1 1 1 1 1
<0.001 0.005 001 0.05 010 0.25 0.5 0.75
fup Distribution

- 100

=75

JUadiad aAne|nWND

# of Values

43 PFAS — analyzed by GC-MS/MS

Mean: 0.2170
— |Median: 0.0940 _
15 25th Percentile: 0.0276 L 100
75th Percentile: 0.2479 i
R
_-75 =3
10— [ c
p— - m
L e
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fup Distribution

20-fold higher median binding for PFAAs vs PFAS alcohols, amides, etc.

fu,=fraction unbound in plasma



wEPA PFAS RED Assay Failures Noted

1 10
o °
0.1 o> . o, »
23 PFAS were compared in RED vs UC o ° ®
assay a %7 2 ol C
- 4 of 23 - detection issues in RED ®  0.0014 m
- 7 of 23 did not achieve equilibrium in 0.01-
0.0001+ '
RED
- High M.W. and high Log P, associated 0.00001 . 0.001 , ,
with RED assay failure 0.0001 0.001 0.01 0.1 1 0 200 400
uc Avg Mass
Of 14 with acceptable data in both 10 . i
methods: . e o0 ° d circles indi
- 7 showed good agreement (within 3- o ® Ifce.l urc:s mh!cate
fold of each other) 2 i ¢ R ISl (St
o 0.1 -
- RED assay tended toward higher binding L _equ:zlgmum
(lower f,, measures) than UC assay; 0.01- . = Ll D sy
- High M.W. and high Log P, associated
with less agreement 0.001 . 2
0 2 4 6 8



Category-Based Evaluations of PFAS
Plasma Protein Binding

Carboxylates
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Category-Based Evaluations of PFAS
Plasma Protein Binding

Carboxylates
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7300-fold difference in binding between lowest and highest bound PFAS in this analysis
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Trends Noted In Functional Group
Presence and Plasma Protein Binding
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Trends Noted In Functional Group
Presence and Plasma Protein Binding
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Trends Noted In Functional Group
Presence and Plasma Protein Binding

Carboxylates i i
y Sulfonates and Phosphonates Alcohols, Amides and Halides
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Note lower binding in third panel — PFAS analyzed by GCMS (20-fold lower binding)



Key Observations - PFAS Plasma Protein Binding

* Groups >99.9% binding (i.e., f,,=0.001):
* Perfluoroalkanoyl chlorides (mean f, = 0.0008)
* Perfluoropolyether carboxylates (PFPECAs)(mean f,, = 0.0009)
* Perfluoroether carboxylates (PFECAs) (mean f,, = 0.0058)
* Per- and polyfluorocarboxylates with 6-9 carbons (mean f, ;= 0.0019)

* PFECAs and PFPECAs — “alternative PFAS” purported to be less
bioaccumulative. Already discovered in NJ waters (NTA study at levels that
exceed the PFOA drinking water standard) and in human follicular fluid
samples

e 16-fold lower binding for PFAS with = 11 vs. 6-9 carbons; similar trend
observed for sulfonates



Physicochemical Properties and PFAS Binding

f, Values

A B) .

-~ Trends are present...

* Increased binding with:

oomor oomorf————— * Increasein LogP,,,

; R e (gmo) ) Log Pow * Increase in molecular weight
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Using NAM Data in Category Approach
to Inform Testing Decisions

Category B e .y
o * @ 5
£
n ¥ T % ga
e eI
G % *
¥
£ ¥ 2 2
1
o ‘.; “ \Cluster - o
ﬂ:* *a‘ ° $‘“
o $$$
t 2
o O
& 2 2z G
= * »
¥ £3 4] Iz £
B0 * $$ - w3 z:ﬂ
g
£ <
b i3
o B & & i:‘ﬁ £ ﬂ*ﬂff’
b ¥
e IR 1 & 1
a® * T ﬂ*ﬁa
* *: x°
G . o Sty S| ogg® “dx
e 5 A SV <
G P G D

« Chemical substances are placed into
high-level categories based on
structure

« Sub-categories are derived using
NAM, chemical property and existing in
vivo data

» At least one chemical substance needs
in vivo data per sub-category for read-
across

Approach employed in the National PFAS Testing
Strategy (October 2021)

https://www.epa.gov/assessing-and-managing-
chemicals-under-tsca/national-pfas-testing-strategy

!Chemical Types
« Untested
*= EXxisting in vivo data
X Proposed for new testing



https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/national-pfas-testing-strategy

wEPA Concluding Thoughts

» Subset of ~¥150 PFAS selected by EPA to support read across
evaluations using NAM data streams
* PPB evaluations were successfully conducted on 110 PFAS that span
over 40 functional categories.
* Four categories identified with plasma binding exceeding 99.9%:
* legacy carboxylic acid and sulfonic-acid containing PFAS O#:;ifacnl&
* Perfluoroalkanoyl chlorides (highest bound, at f, = 0.0001)
* Perfluoro ether and polyether carboxylates
e perfluoroether carboxylate oligomers found in NJ waters in
NTA analyses
e Assay comparisons revealed potential issues with RED, for high mass
PFAS and/or highly lipophilic PFAS
e Data will be used in category approach to inform testing decisions

Establishing
Confidence

Modeling

Uncertainty
& Variability

Computational

Software &
IT Tools
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wEPA In Vitro Hepatic Clearance of PFAS

66 PFAS evaluated for hepatic clearance
0 - <0.9 ul/min*mill cells: 26 PFAS
0.9 — 5 ul/min*mill cells: 21 PFAS
>5 ul/min*mill cells: 19 PFAS

Functional group presence more important
than chain length in overall evaluation

For many PFAS, metabolism will result
in formation of a subsequent PFAS,
which may in turn pose a human
and/or ecological hazard. Ongoing
metabolic characterization is
underway to address these data gaps.
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