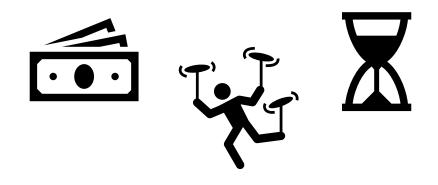
United States Environmental Protection Agency

Advancing Endangered Species Act Consultations Use of an Automated, Computational Pipeline to Extract Points of Departure from Public Data Sources

ESA consultations

Monique Hazemi¹, Dan Villeneuve², Andrea LaTier³, Mark Jankowski³, Carlie LaLone², Christopher Schaupp¹, Manli Chan⁴, Derik Haggard⁴, Kali Mattingly⁵

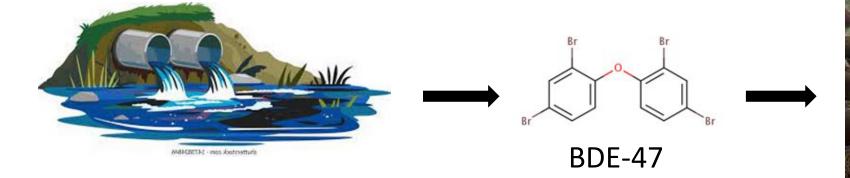

¹Oak Ridge Institute for Science and Education at USEPA GLTED, ²U.S. Environmental Protection Agency, Office of Research and Development (ORD), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN, USA, ³U.S. Environmental Protection Agency, Region 10, Laboratory Services and Applied Science Division (LSASD), Seattle, WA, USA, ⁴U.S. Environmental Protection Agency, ORD, Scientific Computing and Data Curation Division (SCDCD), Research Triangle Park, NC, USA, ⁵SpecPro Professional Services, GLTED, Duluth, MN, USA

<u>Summary</u>: POD estimates derived from the automated pipeline tended to be at lower or approximately equal concentrations compared to manually derived results, providing evidence that the app can provide reasonable, and generally protective, PODs for ESA consultations.

Background

Discharge

U.S. Fish & Wildlife Service


108th Congress

Department of the Interior U.S. Fish and Wildlife Service ashington, D.C. 20240

 Endangered Species Act (ESA) consultations are complicated and time and resource intensive

 Species-specific toxicity analyses required for each chemical

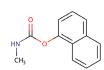
DTXSID3030056

Coho salmon

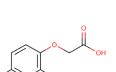
Photo credit: Jessica Newly, Smithsonian

	• •
\mathbf{b}	OCTIV/O
	ective
~J	

ECOTOX Knowledgebase							
		Home	Search Explore	Help		Contac	t Us
Data last updated Jun 15, 2022 See update totals	Recent ch 2,4-D ADBAC Cyantran		luoroalkyl Substances (PFAS)		Total in database 12,540 Chemicals 53,257 References	13,741 Species 1,113,714 Results	
About ECOTOX ECOTOX is a comprehensive Knowledgebase provi chemical environmental tackity data on aquatic a terrestrial gooderies. Read more in: <u>Oliver et al.</u> 2022 Learn More		Getting Started Use Search if you know exact parameters or species, etc.) Use Equipare to see what data may be availab plots) ECOTOX Quick User Guide (2 pp, 141 K) ECOTOX User Guide (95 pp, 672 K) ECOTOX Terma Appendix		Other Links ECOTOX-related do • Frequent Questi • Limitations • Other Tools/Dat • Recent Addition • Literature Search	abases s		


(For more info see next presentation by Dale Hoff: 5.01.T-03 - The ECOTOXicology Knowledgebase...)

Point of departure (POD) < manually derived toxicity benchmark value ???


The App

Methods – Query chemicals & species

	CI	
).,,,,,, _{CI}	

Heptachlor

4-Nonylphenol

Acrolein

Carbary

Diazinon

Dieldrin

Endrin

Dichlobenil

Lindane

Pentachlorophenol

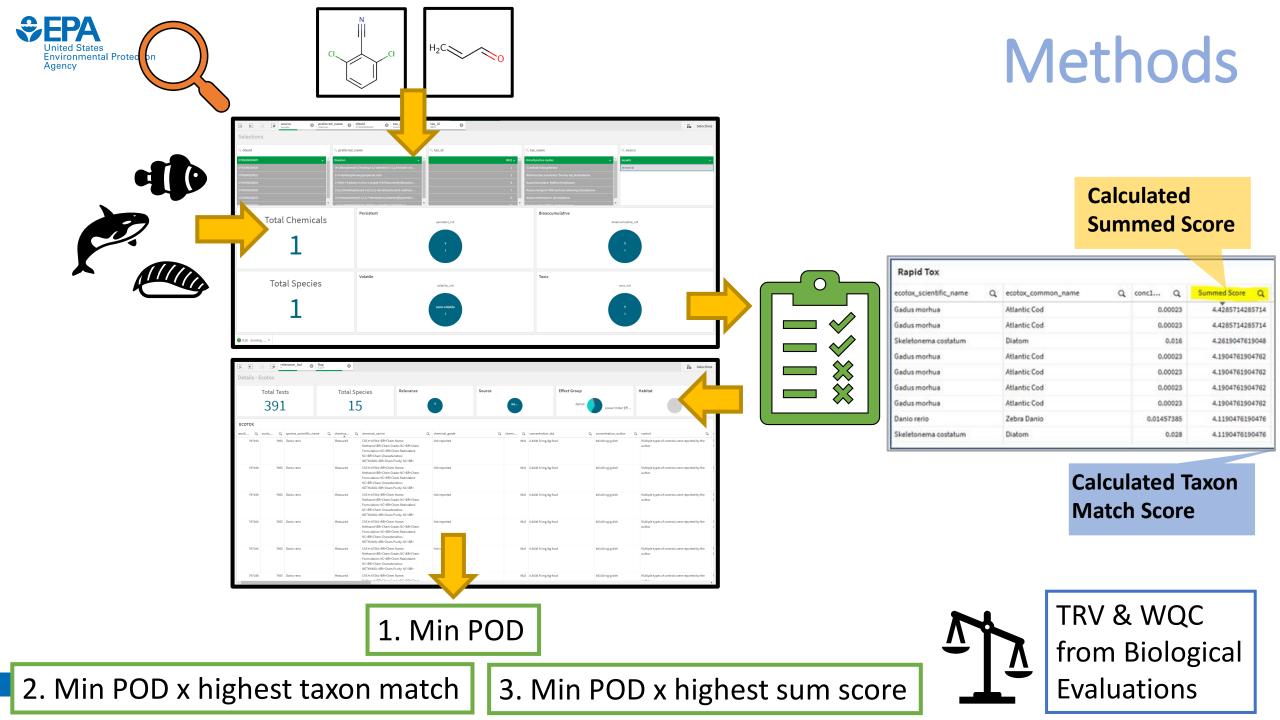
Chemical

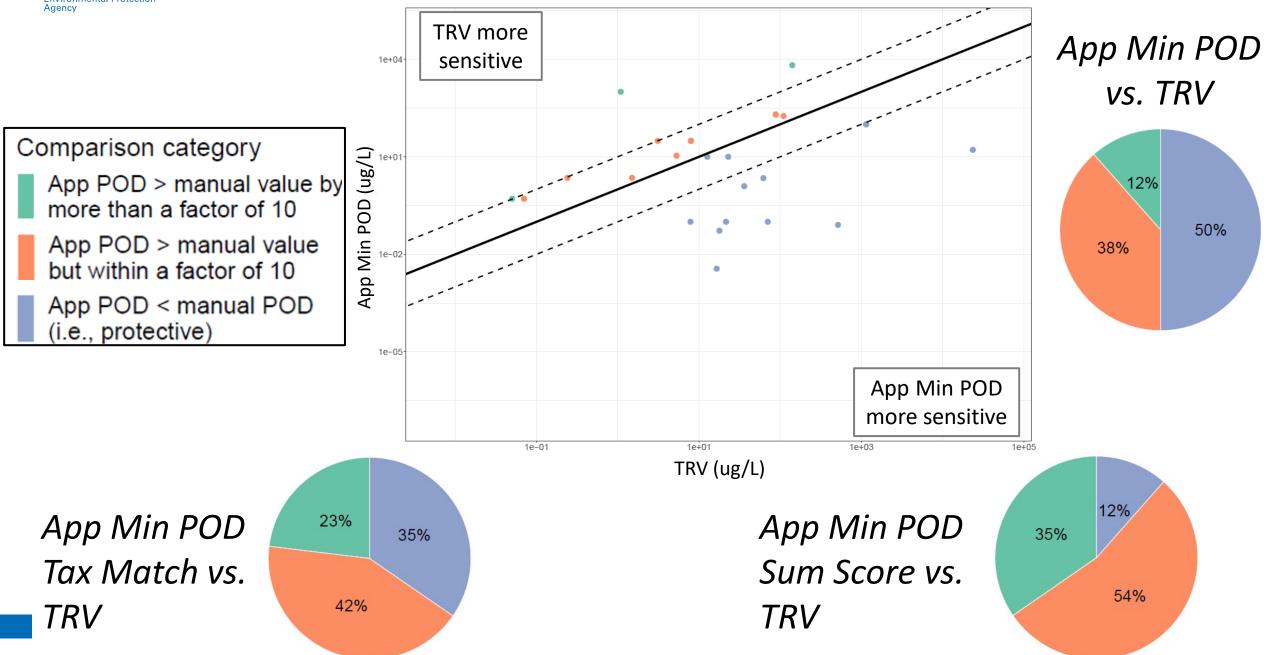
2,4-Dichlorophenoxyacetic acid

Broad range of taxa and mode of actions (herbicides, insecticides, fungicides, some have multiple uses)

Species

Vernal pool fairy shrimp	Branchinecta lynchi
Steelhead	Oncorhynchus mykiss
Foskett speckled dace	Rhinichthys osculus ssp.
Bocaccio rockfish	Sebastes paucispinis





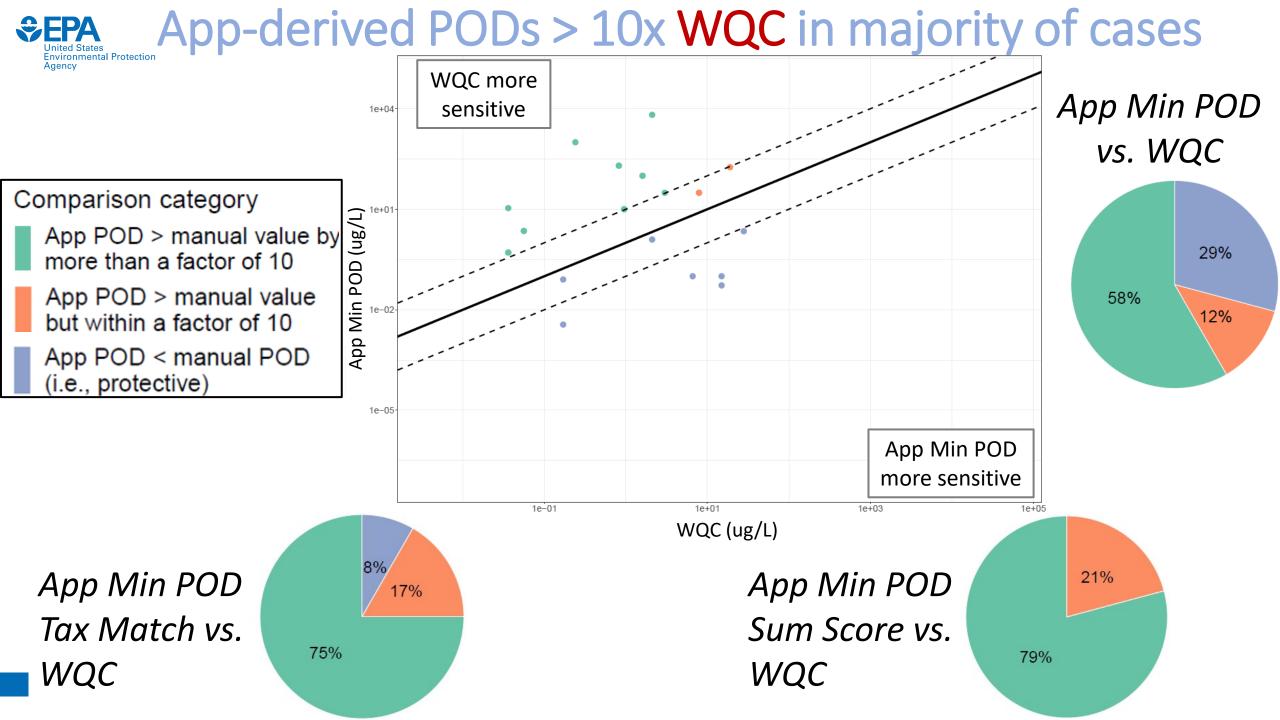


Photo credits: shrimp (Dwight Harvey USFWS), steelhead (USFWS), dace (Doug Markle OSU), rockfish (SWFSC ROV team)

SEPA App-derived PODs < TRV or within 10x in majority of cases</p>

Concordance analysis: Paired t-test, Wilcoxon matched **Environmental Protection** pairs signed rank test

Measure 1 (log10)	Measure 2 (log 10)	Paired t p- value	Paired t statistic	Wilcoxon p- value	Wilcoxon V statistic	
TRV	Min POD	0.087	1.77			4/6
TRV	Min POD SS			0.00011	33	4/6 app
TRV	Min POD TM	0.13	-1.57			wei equ
WQC	Min POD			0.089	108	der
WQC	Min POD SS			8.74E-06	0	WC
WQC	Min POD TM	4.90E-05	-4.89			

Agency

6 cases where p-derived PODs re lower or \approx ual to manuallyrived TRV or QC

Agreement analysis: Intraclass correlation

2/6 cases where app-derived PODs and manually-derived TRV or WQC were concordant.

Poor and moderate degree of concordance.

Measure 1 (log10)	Measure 2 (log 10)	ICC p-value	ICC
TRV	Min POD	0.13	0.20
TRV	Min POD SS	0.027	0.40
TRV	Min POD TM	0.00015	0.61
WQC	Min POD	0.36	0.065
WQC	Min POD SS	0.26	0.056
WQC	Min POD TM	0.30	0.061

Conclusions

ntal Protection

- Benefits of the app
 - Yields generally protective PODs for evaluated range of Endangered species and chemicals
 - App min POD is most conservative of 3 types, with min POD Taxon Match as runner-up
 - App min POD Taxon Match has highest degree of concordance with TRV
 - Helps standardize and track screening of chemicals for evaluation
 - Expedites assessment of toxicity data to prioritize BE development
 - 1 hr vs. 8 40 hrs, per chemical-species pair
- Looking ahead...
 - Calculated adjustment factors for ESA assessments
 - Considering weighted scoring function

Contributors

REGION 10 LSASD: Andrea LaTier, Mark Jankowski, Hunter Whitten, Rochelle Labiosa, Angela Adams, Rob Elleman

ORD SCDCD: Derik Haggard, Manli Chan, Bhaskar Sharma, Norman Adkins, Amar Singh, Saranagapani Addanki, James Renner

ORD CCTE GLTED: Carlie LaLone, Dan Villeneuve, Chris Schaupp, Jennifer Olker

ORISE FELLOWS: John Hoang

OMS CAB: Sherisse Marion, Bryan Chastain, Gregory Byrne, Samantha Arnette

SpecPro Professional Services: Kali Mattingly

This research was supported in part by an appointment to the Research Participation Program at the Great Lakes Toxicology & Ecology Division, U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.

The authors have no conflicts of interest to declare.

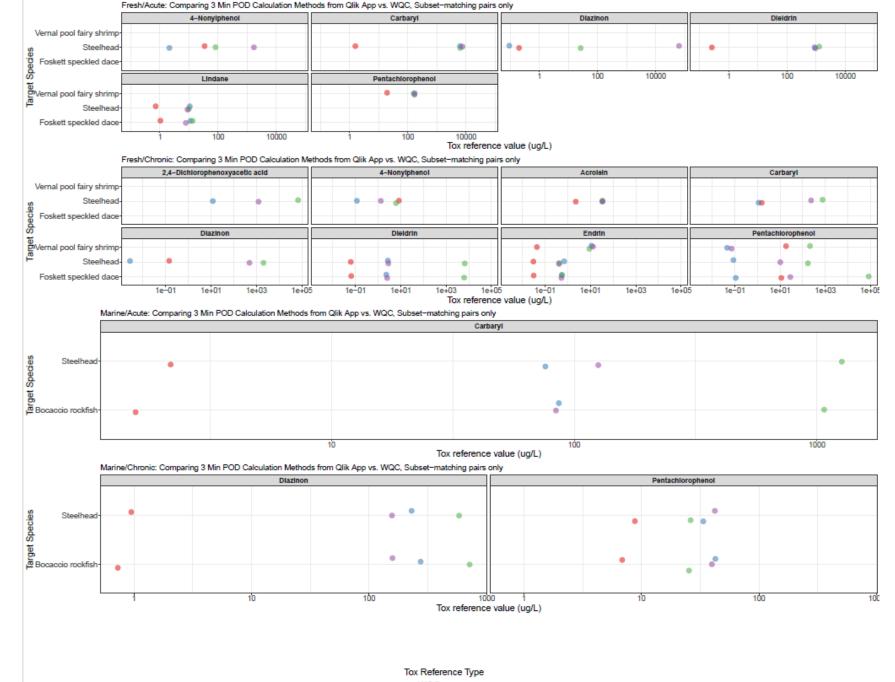
The research presented here neither constitutes nor necessarily reflects official U.S. EPA policy.

Office of Research and Development Center for Computational Toxicology and Exposure

References

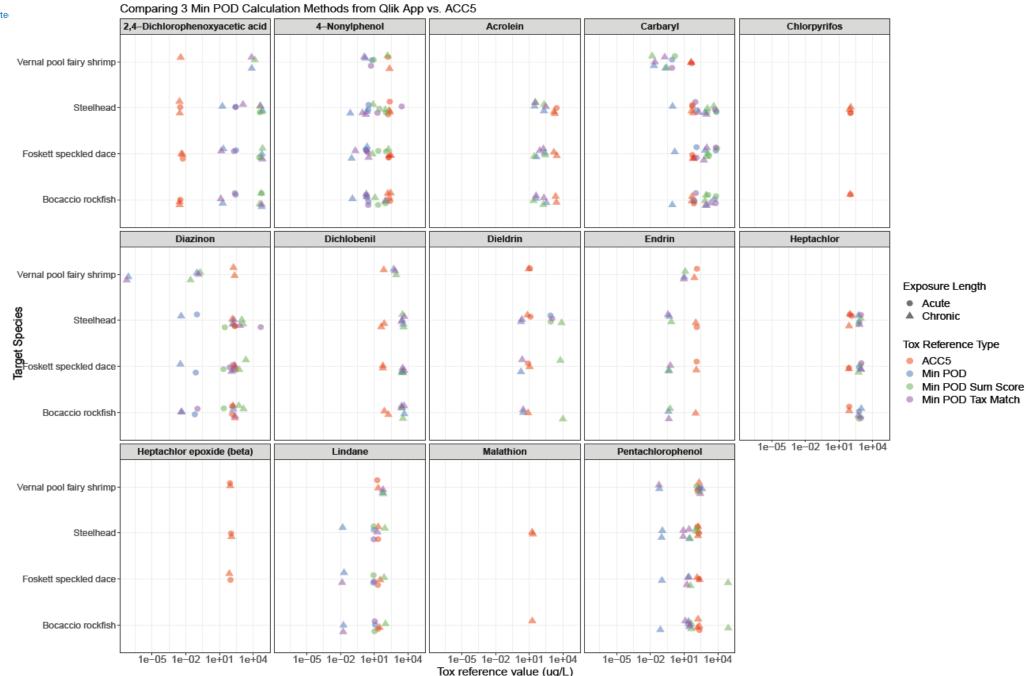
- United States. (1983). The Endangered Species Act as amended by Public Law 97-304 (the Endangered Species Act amendments of 1982). Washington: U.S. G.P.O.
- Olker, J. H., Elonen, C. M., Pilli, A., Anderson, A., Kinziger, B., Erickson, S., Skopinski, M., Pomplun, A., LaLone, C. A., Russom, C. L., & Hoff, D. (2022). The ECOTOXicology Knowledgebase: A Curated Database of Ecologically Relevant Toxicity Tests to Support Environmental Research and Risk Assessment. Environmental Toxicology and Chemistry, 41(6):1520-1539. https://doi.org/10.1002/etc.5324
- Williams, A.J., Grulke, C.M., Edwards, J. et al. (2017). The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. Journal of Cheminformatics, 9(61). <u>https://doi.org/10.1186/s13321-017-0247-6</u>

Extra

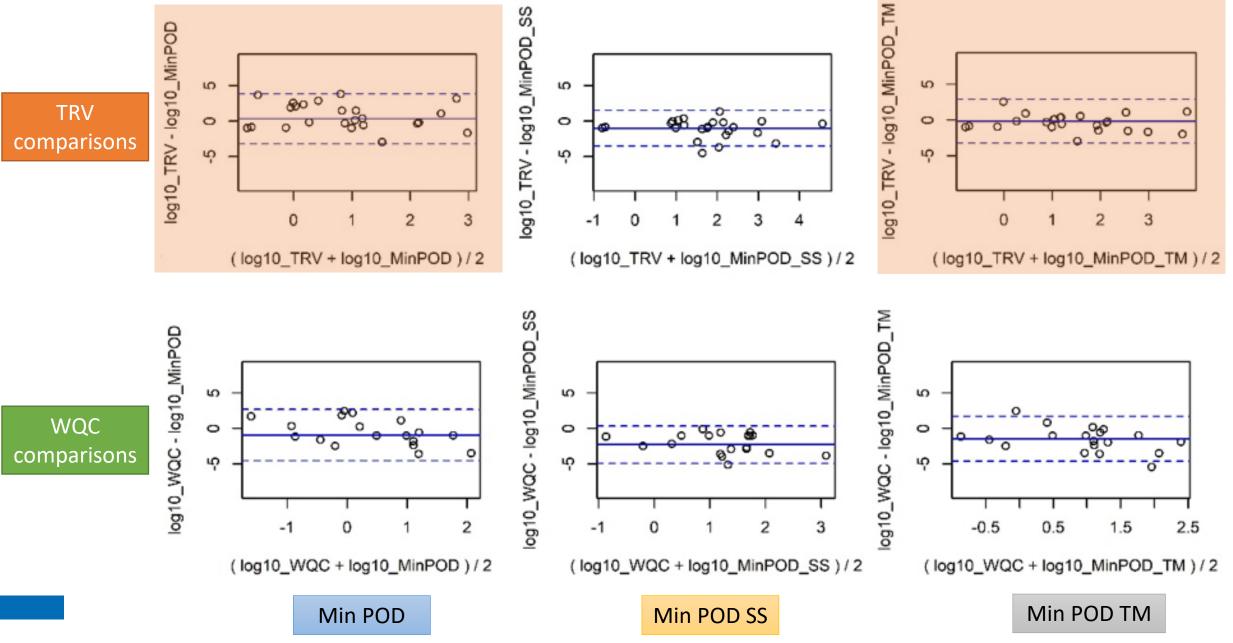


Summed Score Calculation

Scoring Categories	Examples [high to low preference score]
Taxonomic match	Species, genus, family, order, class
Effect type	Apical, neuro-endocrine-immune, lower order
POD type	More protective (e.g., LC10, vs. LC50) > score
Exposure type	Flow through, renewal, static
Control type	Multiple controls, concurrent control, historical control
Exposure verification	Measured, nominal only
Summed Score	Sum of each scoring category (normalized to max score possible in category) – max. = 6



WQC
 Min POD
 Min POD Sum Score
 Min POD Tax Match



App-derived PODs vs. ToxCast ACC5

Agreement analysis: Bland-Altman

SEPA Bland-Altman Agreement Analysis

Agency

ency					
eas_1	meas_2	BA_mean_difference B	A_SD BA_Lo	A_lo_95Cl_BA_L	οA
a_{10} TDV	log10 MinDOD	0.326	1.759	-3.191	
10_TRV	log10_MinPOD	0.320	1.755	-3.131	
g10_TRV	log10_MinPOD_SS	-1.021	1.248	-3.518	
g10_TRV	log10_MinPOD_TM	-0.190	1.528	-3.246	
og10_WQC	log10_MinPOD	-0.943	1.806	-4.556	
0_	0 _				
og10_WQC	log10_MinPOD_SS	-2.291	1.314	-4.920	
log10_WQC	log10_MinPOD_TM	-1.460	1.582	-4.625	