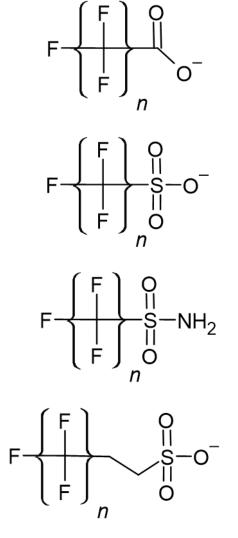


# **Measurement of Octanol-Water and Butanol-Water Partition Coefficients for Per- and Poly-fluorinated Alkyl Substances.** Henry A Sluka<sup>1</sup>, Tyler Shonrock<sup>2</sup>, Ian D Mundy<sup>3</sup>, Lawrence Burkhard<sup>3</sup>, David R Mount<sup>3</sup>, Will Backe<sup>3</sup>


<sup>1</sup>ORISE, GLTED, Duluth, MN; <sup>2</sup>ORAU, GLTED, Duluth, MN; <sup>3</sup>U.S. EPA, ORD, CCTE, GLTED, Duluth, MN.

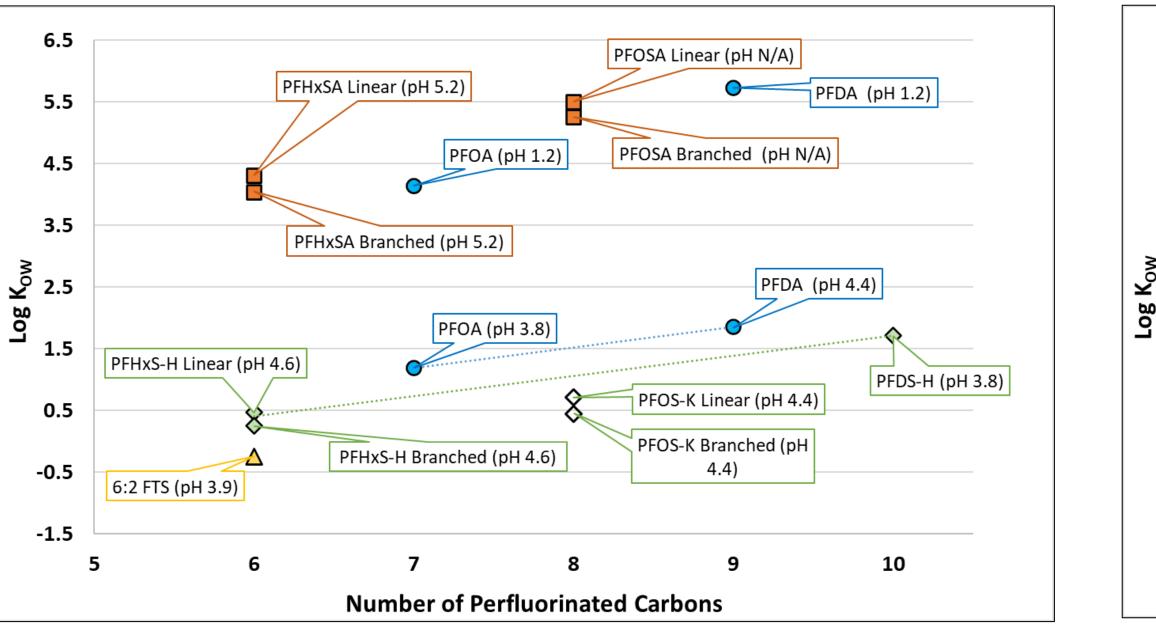
Henry A. Sluka | Sluka.Henry@epa.gov | 218-529-5061

#### Introduction

Per-and-poly-fluorinated alkyl substances (PFAS) are a diverse class of synthetic compounds found ubiquitously in the environment. Certain PFAS are demonstrated to bioaccumulative, toxic, and resistant to degredation. Octanol-water partition coefficients (K<sub>ow</sub>) are useful properties that can be used to predict the environmental fate, bioaccumulation, and toxicity of chemicals. However, log K<sub>ow</sub> values predicted by various computational models are inconsistent, likely because those models were calibrated using data from neutral and non-perfluorinated organic chemicals. For example, the EPA's CompTox Chemical Dashboard lists a range of model-predicted log  $K_{OW}$  values for PFOA (perfluorooctanoic acid) from 3.1-7.8. Experimental data for octanol-water partition values of PFAS are rare and in some cases derived from indirect measurements. The paucity of reliable partitioning data for PFAS is a critical data gap that hinders the development of predictive models. As such, the purpose of this work is to experimentally measure K<sub>OW</sub> values for a range of PFASs within the homologue series of carboxylates, sulfonates, sulfonamides, and fluorotelomer sulfonates (see structures below in descending order). In addition, the butanol-water partition coefficient (K<sub>BW</sub>) was determined for some PFAS to determine if previously established relationships between log  $K_{OW}$  and log  $K_{BW}$  hold true for PFAS.

#### Methods






The procedure followed the OECD guidelines for determining octanol-water partition coefficients by the slow-stir method. Briefly, select PFAS were dissolved separately into water-saturated solvent (either octanol or butanol). After the chemical was disolved, 100-300 mL of the solvent solution was added to a slow stir apparatus (pictured above to the right) containing 3.5 L of solvent-saturated deionized water. For some experiments, the water was acidified with HCl, for the purpose of exploring pH dependency on partitioning. The experiments were temperature controlled at 25.0 °C using a water jacket. After a minimum of three days of gentle stirring, organic and aqueous samples were taken and analyzed by highperformance liquid chromatography coupled to a single quadrupole mass spectrometer by electrospray ionization. A minimum of eight separate determinations of log K<sub>OW</sub> and log K<sub>BW</sub> were made over at least four separate days from two independent tests. For the partition coefficient measurement to be valid, the slope of the partitioning coefficent as a function of time was required to be statistically not different than zero ( $p \le 0.05$ ). Measurements of pH were taken throughout each experiment, except for PFOSA.

Measured log K<sub>OW</sub> values agree well with KOWWIN<sup>™</sup> predicted values for compounds that are neutral (PFHxSA and PFOSA) or are assumed to be mostly neutral (PFOA and PFDA @ pH 1.2). KOWWIN<sup>™</sup> predicts partition coefficients using the atom/fragment contribution method.

**U.S. Environmental Protection Agency** Office of Research and Development

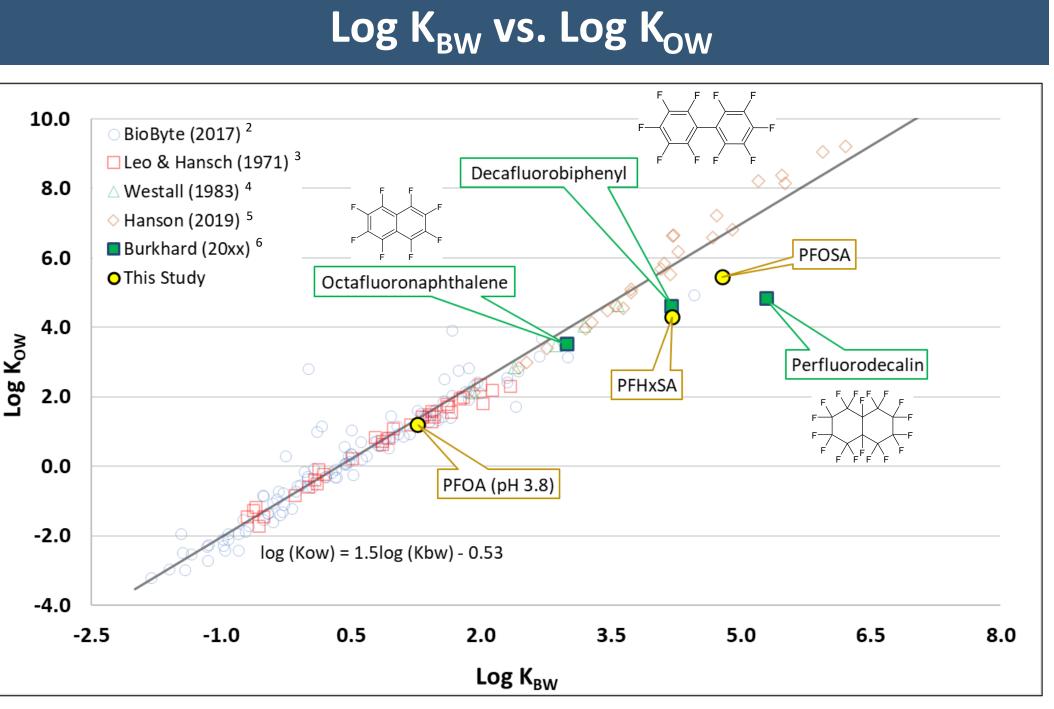
# Log K<sub>ow</sub> vs. Number of Perfluorinated Carbons



• Log K<sub>ow</sub> increases with increasing chain length.

Log

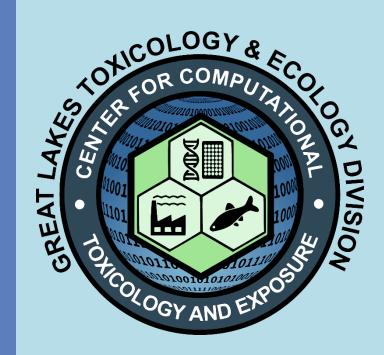
• The mass balance of each experiment was an average of 96 ± 8% (95% C.I.) with a range of 76-110 %.


• On average the linear isomers had a log  $K_{OW}$  value of 0.25  $\pm$  0.03 (95% C.I.; n=4) greater than their branched counterparts (all branced species were integrated together).

• There was a significant increase (3-4 log units) in log  $K_{OW}$  between experiments using unmodified water and acidified water.

• The PFOS-K results are suspect. PFOS-K was tested at octanol concentrations of 300, 25, and 8.3 mg/L resulting in log K<sub>ow</sub> values of 0.08, 0.56, and 0.71 (graphed), respectively.

## Measured log K<sub>ow</sub> vs. KOWWIN Predicted Values


| Chemical          | Measured<br>log K <sub>ow</sub> | Predicted<br>log K <sub>ow</sub> | Δ<br>log K <sub>ow</sub> |
|-------------------|---------------------------------|----------------------------------|--------------------------|
| 6:2 FtS (pH 3.9)  | -0.24                           | 2.7                              | 2.9                      |
| L-PFHxS (pH 4.6)  | 0.47                            | 3.2                              | 2.7                      |
| L-PFOS (pH 4.4)   | 0.71                            | 4.5                              | 3.9                      |
| PFDS-H (pH 3.8)   | 1.7                             | 5.8                              | 4.1                      |
| PFOA (pH 3.8)     | 1.2                             | 4.8                              | 3.6                      |
| PFDA (pH 4.4)     | 1.9                             | 6.2                              | 4.3                      |
| PFOA (pH 1.2)     | 4.2                             | 4.8                              | 0.61                     |
| PFDA (pH 1.2)     | 5.7                             | 6.2                              | 0.45                     |
| L-PFHxSA (pH 5.2) | 4.3                             | 4.5                              | 0.16                     |
| L-PFOSA (pH N/A)  | 5.5                             | 5.8                              | 0.30                     |



Previous studies on non-PFAS compounds show a strong relationship between butanol-water and octanolwater partitioning. Using this relationship, log K<sub>BW</sub> values can be used to estimate the values for high log K<sub>ow</sub> compounds for which aqueous measurements would be difficult to quantify otherwise. While data is currently sparce, PFAS with log  $K_{ow}$  of < 4 agree well with the regression, while PFAS with log  $K_{ow}$  of > 4 start to deviate. More experimentation will be need to determine to what extent PFAS fit this trend.

- Continue to evaluate the relationships between log K<sub>OW</sub>, perfluorinated chain length, and other structural characteristics.
- Determine if, and to what extent, changes in pH effect the partitioning of carboxylates, sulfonates, telomer sulfonates and sulfonamides.
- Determine, if and to what extent, ionic strength plays a role in partitioning behavior.
- Compare the partitioning of different species of PFAS (e.g., PFOS-K and PFOS-H)
- 1. OECD. (2006). Test No. 123: Partition Coefficient (1-Octanol/Water): Slow-Stirring Method. OECD Publishing. 2. BioByte Corp. (2017). ClogP. BioByte Corporation
- 4. Westall, J. C. (1983). Properties of organic compounds in relation to chemical binding. *Proc Biofilm Processes in* Ground Water Research, Stockholm, 65-90.

The views expressed in this poster are those of the authors and may not reflect US EPA policy



## **Future Work**

• Continue to evaluate relationship between log  $K_{BW}$  and log  $K_{OW}$  for PFAS

## Citations

- 3. Leo, A. J., & Hansch, C. (1971). The Journal of Organic Chemistry, 36(11), 1539-1544.
- 5. Hanson, K. B., et al. (2019). Chemosphere, 218, 616-623.
- 6. Burkhard, L. (20xx) In progress.