
Transcriptomics-based 
points of departure for 
ecotoxicology – an update 



Disclaimer:
Results contained herein are preliminary and should be regarded as 
“work in progress”.  Specific values may change as analysis methods are 
refined.  

Please contact Villeneuve.dan@epa.gov for updates before using or 
citing any results described below.
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APCRA Case study: Transcriptomics-based 
PODs for Ecotoxicology 

1. Generate transcriptomic PODs for ≈ 20 chemicals
• Initial focus on fathead minnow

2.  Compare tPODs with available acute and chronic toxicity data

3. Compare tPODs with in vitro-derived PODs 

Hypothesis:  24 h whole body transcriptomics can provide a protective, but not overly 
protective, point of departure for ecological toxicity.

Approach: 
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Test Chemical Assay 
Completed

Library 
Prep

tPOD Free fraction 
measured?

1 CuSO4 X X X No

2 ZnSO4 X X X No

3 NiSO4 X X X No

4 Clothinidin X X X No

5 Flupyradifurone X X X No

6 Imidacloprid X X X No

7 Thiacloprid X X X No

8 Sertraline X X X No

9 Fluoxetine X X X No

10 Paroxetine X X X No

11 Dibutyl phthalate X Yes

12 DEHP X Yes

13 Benzyl butyl pthalate X Yes

14 Parathion X X X Yes

15 Fenthion X X X Yes

16 Methidathion X X X Yes

17 Bisphenol A X X X No

18 4-nonyl phenol X X X Yes

19 Estrone X X X Yes

20 Methoxyfenozide X X X Yes

21 Tebufenozide X X X No

22 Halofenozide X X X No

23 Atrazine X X X Yes

24 Simazine X X X No

25 Cyanazine X X x Yes

Case study Progress
• Exposures completed with 25 

chemicals.
• 8 mode of action groupings
• 3-4 chemicals per MoA group

• Sequencing complete for 22
• 3 phthalates excluded due to 

low and/or variable exposure 
concentrations

• Results of the first 10 
chemicals – revised MS in 
review

• Preliminary analysis complete 
for second set of 12 chemicals



DEGs based on univariate statistical testing (DeSeq2)
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12 new chemicals tested 
represented 4 modes of action

Response to the triazine 
herbicides was the most varied 
within class



Identity of filtered 
DEGs (used to 
determine BMCs)

Very little consistency in the 
identity of the genes for which a 
BMC could be derived within 
MoA class.



First 10 chemicals:
• tPODs were more sensitive 

than apical adverse effect 
concentrations.

Next 12 chemicals:
• tPODs for parathion, 

estrone, and 4-
nonylphenol exceeded 
the 25th percentile of 
apical effect 
concentrations from 
ECOTOX. (i.e., not 
protective)

Comparison with In vivo, Adverse Effect Concentrations (Fish)



Comparison with In vivo, Biological Effect Concentrations (Fish)

In addition to paroxetine, estrone, 
and 4-nonylphenol, tPODs for 
atrazine and simazine were not 
protective compared to tier 2 effect 
concentrations from ECOTOX



Fish tPODs are not universally protective of other taxonomic groups of aquatic organisms

Includes chemicals like 
fenthion and thiacloprid for 
which fish tPODs were 
protective for fish.



Use of nominal concentrations in deriving tPODs is a source of error

After correction for measured 
chemical concentration in the test 
well, tPODs for parathion and 4-
nonylphenol were both protective.

Only the tPOD for estrone remained 
non-protective, after correction



Assay acceptance considerations – based on 1st 10 chemicals

tPODs based on < 15 fDEGs were 
highly variable
• 12 replicates of in silico sub-

sampling

Based on 30 iterations of randomly 
assigning controls to treatment 
groups, 95% of time the number 
BMCs derived from false discovery 
is less than 15

≥15 BMCs was provisionally 
recommended as an assay 
acceptance criterion. 



Next 12 chemicals – Assay acceptance
Chemical Sequenced 

features
DEGs fDEGs tPOD (mg/L)

Estrone 22218 72 20 0.7793942

4-Nonylphenol 22305 40 7 0.1959934

Bisphenol A 22228 61 16 0.013298184

Fenthion 22554 48 9 0.38902023

Methidathion 22130 195 78 6.345331

Parathion 22044 45 6 1.217177

Atrazine 22276 117 18 0.0390717

Cyanazine 21891 447 103 0.01393464

Halofenozide 21313 39 3 1.0772216

Methoxyfenozide 21611 59 22 2.220094

Simazine 21515 65 3 0.329272

Tebufenozide 21357 48 6 0.00027112

50% of the chemicals tested did 
not meet our provisional assay 
acceptance criteria (≥ 15 fDEGs)

Unacceptable tests (low numbers 
of DEGs) was not grouped by mode 
of action.

Likely driven by inter-individual 
variability – larval, whole body 
transcriptomics

More optimization needed – assay 
design and data analysis



Reproducibility of transcriptomic response
• 0.15 mg/L CuSO4 tested n=10 independent assays
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330 DEGs (7.7%) 
observed at least 
50% of experiments



Conclusions
• In its current form, larval fathead minnow HTTr assay does not appear 

reliable as a protective tier 1 screen for ecological hazard.
• Potential issues with inter-individual variability
• Whole-body dilution of tissue-specific responses

• There is opportunity for further optimization to improve performance
• Correction of tPODs based on free fraction in the test well – measured or modeled
• Testing strategy with increased pooling of individuals is being piloted

• Further optimization and testing is required before ready for 
regulatory / decision-making applications
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