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Background: Studying PFAS in the Environment
• Per- and polyfluoroalkyl substances 

(PFAS) have been detected on every 
continent in surface,1,2 drinking,1,2 

wastewater and biosolids 3

• Liquid chromatography mass spectrometry 
(LC-MS) is often used for PFAS targeted 
identification & quantification1-3

• Non-targeted analysis has identified 
several new PFAS for which reference 
standards are not available and therefore 
can not be directly quantified 4

1. Kurwadkar, S., et al. Science of The Total Environment, 2022.
2. Vento, S.D., et al., Atmospheric Pollution Research, 2012.
3. Venkatesan, A.K., et al. Journal of Hazardous Materials. 2014.
4. Nakayama, S, F. et al. Trends in Analytical Chemistry

• How can we quantify PFAS without reference standards?
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Background: Current inverse prediction models

31. Groff, L.C., et al. Analytical and Bioanalytical Chemistry. 2022

• Inverse prediction models were used to quantify organic 
contaminants without reference standards in solvent

• Naïve bounded response factor (RF) bootstrap method:
• All chemical RFs from training set used to bound the 

concentration estimate of an unknown
• No assumptions about chemical structure 
• High uncertainty due to models generic nature

• Ionization efficiency estimation method:
• Considers SMILES structures, analytical solvents, and analyte 

retention times 
• Lower overall uncertainty than bootstrap RF method but more 

error than ideal inverse predictions

 But matrix effects & solubility were not considered



Background: Matrix effects on response factor
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Targeted analyses use calibration curves to 
calculate analyte response factor (RF) and 
quantify detections

(RF) =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴

• Assumed to be consistent across linear 
dynamic range

• Can be affected by matrix coextracted ions       
Ex. RF is 3x higher in sludge & biosolids 
than solvent (150 ppb)
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 Hypothesis 1: Coextracted matrix 
influences the RF of PFAS in LC-MS 
analyses using electrospray ionization (ESI)



Background: Solubility effects on response factor

51. USEPA Comptox Dashboard, OPERA predicted properties. 2022
2. Renner, R. KOW controversy. ES&T 2002

• No signal for FOSA in solvent (95% water, 
5% acetonitrile)

• Aqueous solubility (OPERA1 calculated) 
for FOSA = 7.81 x 10-7 mol / L

• FOSA in sludge and biosolids samples 
had good signal and peak shape

• Matrix can increase non-polar 
characteristics of water2 and improve 
PFAS solubility in matrix extracts
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 Hypothesis 2: Variation in analyte solubility 
causes low observed RFs for some PFAS in 
aqueous solvent and can also vary between 
matrix coextracts



Project goals
Project Goals:
Develop a technique for inverse quantification predictions for PFAS without 

reference standards that can correct for sample matrix & resuspension solvent

Tasks:
(1) Evaluate the effects of matrix and solvents on analyte RF
(2) Calculate inverse estimation error for each analyte with optimal techniques: 

i.e. Matrix-matched calibration curves

(3) Calculate inverse estimation error with naïve conditions with no assumptions 
about physico-chemical properties                                                                             

i.e. naïve bounded RF method

(4) Optimize an inverse error estimation method that considers matrix & solvent effects
(5) Validate the optimized method through bootstrapping and cross-validation
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Analytes & sample matrices
Training analytes: Isotopically labelled PFAS standards including -
carboxylates (10), sulfonates (3), fluorotelomer sulfonates (3), and sulfonamides (3)
Linear range: 0.5 – 250 ppb
95% 5mM ammonium acetate, 5% Acetonitrile
• Reference standard 
• Drinking water (500 mL)
• Surface water (500 mL)
• Secondary effluent (100 mL)
• Raw influent (100 mL)
• Waste activated sludge (250 mg)

25% 5mM ammonium acetate, 75% Methanol
• Reference standard
• Drinking water (500 mL)
• Waste activated sludge (250 mg)
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Matrix & solubility effects on RF
Log Concentration vs. Log Area plots:

Slope ~ 1
Log(RF) = Y-intercept 

 Matrix coextracts are shown to affect RF

The linear range of some analytes & matrices 
have only 3 calibration points & slopes ≠ 1

 Analyte solubility in aqueous solvent is poor 
for certain analytes

Y-int = 6.22 
RF = 1.66x106

Y-int = 6.75 
RF = 5.62x106

PFHxA N-Me-FOSAA
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Project goals
Project Goals:
Develop a technique for inverse quantification predictions for PFAS without 

reference standards that can correct for sample matrix & resuspension solvent

Tasks:
(1) Evaluate the effects of matrix and solvents on analyte RF
(2) Calculate inverse estimation error for each analyte with optimal techniques: 

i.e. Matrix-matched calibration curves

(3) Calculate inverse estimation error with naïve conditions with no assumptions 
about physico-chemical properties                                                                             

i.e. naïve bootstrap RF method

(4) Optimize an inverse error estimation method that considers matrix & solvent effects
(5) Validate the optimized method through bootstrapping and cross-validation
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Inverse predictions: Ideal conditions
Drinking water (DW):

PFOA
Drinking water 75% MeOH 

(DW75): PFOAMatrix-matched 
calibration curves: 

• Ideal quantification 
technique

• Benchmark for error to 
compare other 
techniques

“Leave-one-out” validation:     
All but 1 injection included in 
calibration curve 
Concentration of the “left out” 
injection is calculated to 
determine uncertainty

1) DW area = 3.0 x 108

Concentration bounds : ~30 – 110 ppb
2) DW 75 = 5.1 x 107

Concentration bounds: ~45 – 65 ppb 

Ex. Quantify PFOA 50 ppb, replicate #2 
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Matrix effects on inverse estimation error

• Complex matrices (e.g., Inf) often had higher error intervals vs. cleaner matrices (e.g., SW) 
• Long chain and sulfonamide PFAS often had larger intervals vs. shorter chain analytes

Upper bounds 

Predicted Concentration

Lower bounds
Actual Concentration

Legend

Increasing Retention Time Increasing Retention Time

Surface water (SW) Raw Influent (Inf)
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Solubility effects on inverse estimation error

• More error in aqueous standard than in 75% MeOH standard
• Uncertainty in the aqueous standard increases with retention time
• 75% MeOH standard had smaller and more stable error overall

Standard in aqueous (STD) Standard in 75% MeOH (STD75)

Upper bounds

Predicted Concentration

Lower bounds
Actual Concentration

Legend

Increasing Retention Time Increasing Retention Time
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Project goals
Project Goals:
Develop a technique for inverse quantification predictions for PFAS without 

reference standards that can correct for sample matrix & resuspension solvent

Tasks:
(1) Evaluate the effects of matrix and solvents on analyte RF
(2) Calculate inverse estimation error for each analyte with optimal techniques: 

i.e. Matrix-matched calibration curves

(3) Calculate inverse estimation error with naïve conditions with no assumptions 
about physico-chemical properties                                                                             

i.e. naïve bootstrap RF method

(4) Optimize an inverse error estimation method that considers matrix & solvent effects
(5) Validate the optimized method through bootstrapping and cross-validation
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Naïve bounded RF predictions

Naïve bootstrap predictions: 
• Predict concentrations for 

unknown PFAS using other 18 
PFAS as surrogates for RF

• RF bootstrap distribution 
quantiles can be used to bound 
uncertainty in the predictions

• 97.5  upper uncertainty bound
• 2.5  lower uncertainty bound
• Median  best estimate

Image from: The essential 
guide to bootstrapping in 

SAS

Original population Bootstrap population

Resampling
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Benchmark vs. naïve inverse estimations
Percent Exceedance Uncertainty Fold-Range

Calibration 
Curve

Naïve 
Bounded 

RF

Calibration 
Curve

Naïve 
Bounded 

RF
Aqueous resuspension

Standard 3.1% 19.7% 1.9 68.2
Drinking Water 5.3% 21.5% 2.0 54.8
Surface Water 5.6% 20.0% 1.8 77.1

Secondary Effluent 5.7% 13.1% 2.6 27.9
Raw Influent 5.7% 12.1% 2.6 11.9

Sludge 5.6% 11.4% 1.9 12.2
75% Methanol resuspension

Standard 4.7% 13.7% 1.2 5.2
Drinking Water 5.5% 16.9% 2.8 14.4

Sludge 4.2% 10.9% 1.5 9.1
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• Naïve bootstrap RF 
predictions had a higher 
uncertainty fold-range 
than the targeted 
calibration inverse 
predictions

• Simpler/aqueous 
matrices including the 
standard had a higher 
uncertainty range than 
the 75% MeOH 
resuspension or complex 
matrices (i.e. Sludge)



Conclusions
• Matrix effects and solubility effects 

impacted the observed RFs for 
PFAS

• Analytes with a retention time > 21 
minutes had poor solubility in 
aqueous solvents 

• Artificially low RF in aqueous solvent 
causing wide RF distributions

• Naïve bootstrapping had highest error in 
simple, aqueous samples (drinking 
water, surface water, standard)

• Naïve bootstrap predictions had 
higher uncertainties compared to 
inverse calibration predictions

Future work
• Test expert surrogate inverse 

prediction to bootstrap RF distributions 
based on chemically specific 
surrogates (n=3)

• Develop an inverse prediction 
technique for PFAS which considers 
matrix and solubility effects 

• Apply a mixed model with predicted 
ionization efficiencies to a training set in 
sample matrix

• Include variable to correct RF for solubility 
limitation for late eluting analytes 

• Validate the optimized method through 
bootstrapping and cross-validation
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