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Qualitative sensitivity
 ToxCast assays can detect most 

neuroactive substances that have 
been adequately screened, except for 
volatiles/semi-volatiles.

 Further screening of chemicals may 
reveal missed neuro-relevant 
molecular targets of concern.

Quantitative sensitivity
 PODNAM is more sensitive than 

PODtrad,5%-ile for most (71%) 
neuroactive substances.

 Three structural features found in 
some organophosphates and 
pyrethroids are enriched among 
neuroactive substances with    
PODNAM > PODtrad,5%-ile.
 Assay improvements or safety 

factor adjustments may be 
needed to achieve sufficient 
quantitative sensitivity for these 
substances. 

Specificity of NSR ToxCast assays
 NSR ToxCast assays detect 

toxicodynamic activity from many 
neuroactive as well as other tested 
substances.

 Additional toxicokinetic information, 
such as blood-brain barrier and brain 
compartment modelling, will likely be 
needed to predict neuroactivity in vivo.
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Many neuroactive substances not active in 
ToxCast are semi-volatile to volatile or have 
not been screened thoroughly

Promiscuity of substances in NSR ToxCast assays indicate additional 
information is needed to differentiate neuroactive from other substances

 Neuroactive substances (86%) and other tested 
substances (79%) were active in ≥1 ToxCast 
assay endpoint.

 Substances are unequally tested across ToxCast 
assays.
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ConclusionsToxCast detects 
bioactivity from 86% of 
neuroactive substances

Data

Introduction

Background
 Previous studies identified potential gaps in the U.S. 

EPA’s Toxicity Forecaster (ToxCast) assay suite for the 
detection of neuroactivity.1,5,7,8

 New nervous-system relevant assay endpoints have 
been added to ToxCast, including several whole-cell 
neuronal assays.

 Can the new ToxCast assay suite… 
 detect bioactivity from neuroactive substances?
 inform a protective point of departure for 

neuroactive substances?
 substantiate differences between neuroactive 

and other substances?

1,668 ToxCast assay endpoints

ToxCast pipeline indicators used to exclude positive hit 
calls with:

• 3 or more caution flags
• Concentration that caused a 50% of maximal 

response (AC50) < minimum concentration tested 
and model top < 20% above the cutoff

• cell viability assay with a gain-loss model fit

with evidence of in vivo neuroactivity based on:

1,242 
other

328

98

426 nervous-system 
relevant (NSR)

Derived from cell-free or non-
neuronal cell assays with a 
neuro-relevant target (based on 
Human Protein Atlas,2,3 expert-
knowledge, or derivation from 
neuronal tissue)

Derived from whole-cell neuronal 
assays

477 neuroactive substances

• Common knowledge in the field
• Manual curation of published literature
• Neurotoxicity data in the U.S. EPA’s 

Toxicity Values database
• Neuroactive stereoisomers of one of the 

above

427

50 • Additional salts of the above Other reasons for lack of activity:
 Insufficient concentration tested (e.g., phenobarbital)
 Stereoisomer tested may not be the most potent form (e.g., endosulfan II)
 Metabolic activation required (e.g., cyclophosphamide monohydrate)
 Not screened in assay(s) designed for putative molecular target and action 

(e.g., naloxone)

 Mann-Whitney tests indicate only slight shift in qualitative or quantitative activity for some groups of neuroactive and other 
substances tested in a similar number of NSR assay endpoints (* = Bonferroni-adjusted p-value < 5%).
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Neuroactive substances with any of 3 “enriched” structural features have higher 
odds of lacking quantitative sensitivity in ToxCast (PODNAM > PODtrad,5%-ile)invitrodb v3.4, 2021, with 9 whole-cell neuronal assays taken from EPA’s internal 

invitrodb (accessed March 2022)

Traditional in vivo POD (PODtrad):
 Applied filters to the study PODs in U.S. EPA’s 

Toxicity Values database:
 Oral/gavage administration
 Common species
 Dose units convertible to mg/kg bw/day
 POD type such as BMDL, LEL, or NEL, etc. 
Ꭓ Acute studies

 Collapsed across POD types, species, and study 
types to obtain traditional in vivo PODs (PODtrad) for 
each substance:

4

4

ToxCast appears to detect bioactivity at a sufficiently sensitive concentration for 
71% of neuroactive substances

71.3%
(154)

28.7%
(62)

PODNAM ≤ PODtrad,5%-ile

PODNAM > 
PODtrad,5%-ile
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Chlorethoxyfos  52% (32 / 62) neuroactive substances with PODNAM > PODtrad,5%-ile contain an 
enriched CT.

# PODNAM > PODtrad,5%-ileneuroactives 
with CT # PODNAM ≤ PODtrad,5%-ile

# PODNAM > PODtrad,5%-ileneuroactives 
without CT # PODNAM ≤ PODtrad,5%-ile

=

PODtraditional
more sensitive

PODNAM
more sensitive

 3 / 288 ToxPrint CTs represented are “enriched” based on:
(adapted from Paul Friedman et al., 2020)5

 ≥3 substances with PODNAM > PODtrad,5%-ile contain the CT
 odds ratio ≥ 3 
 ≤5% Bonferroni-adjusted probability that true odds ratio ≤ 1

 All substances containing an enriched CT are 
organophosphates or pyrethroids.
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