

Short-Term Transcriptomic Points-of-Departure are Consistent with Chronic Points-of-Departure for Three Organophosphate Pesticides in Rodents

Rubia M. Martin, Ph.D. ORISE Post-Doctoral Researcher CCTE / CCED / ETTB

October 19th, 2022

Acknowledgments: Drs. Leah Wehmas and Susan Hester.

Disclaimer

The views in this presentation do not necessarily represent those of the US EPA.

Benchmark dose-response modeling is superior to identifying a point of departure in risk assessment

2

Molecular changes from short-term exposures can be modeled to estimate chronic exposure biological effects

Gene expression can provide a transcriptomic point of departure (TPOD)

Liver transcriptome-based POD from short-term exposures can estimate apical PODs from long-term exposures

OPPs cause acetylcholinesterase inhibition, which was used to set the chronic apical POD (APOD) in rodents

Several genes were considered to have a dose-responsive behavior at 7 days

Diseases	P value
Cancer	2.60E-05
Neurological	
diseases	1.40E-04
Immunological	
diseases	2.50E-04
Inflammatory	
Diseases	2.50E-04

BMDT and BMDLT median levels and ranges suggest relative low variability in the modeled genes

BMDT

BMDLT = TPOD

Dose-responsive genes were mapped to a wide range of GO biological processes (GO: BP)

Number of GO: BP categories for BMDT and BMDLT, respectively.

Comparison between transcriptomic PODs and apical PODs

Chemical	GO:BP	Gene Symbols	BMDT (mg/kg-d)	BMDLT or TPOD (mg/kg-d)	APOD (mg/kg-d)	Ratio APOD: TPOD
Fenthion	multicellular organismal water homeostasis	wfs1;scd1;plec;gba ;cela2a	0.02	0.01	0.03	3.4
Methidathion	G2/M transition of mitotic cell cycle	fbxl21;plk1;nes;ccn a2;birc5	0.29	0.17	1.60	9.4
Parathion	phosphatidylinositol phosphate biosynthetic process	socs2;fam126a;pik 3r3;pik3c2g;socs3	1.54	0.19	0.10	2.0

TPODs, derived from 7-day exposure, were generally more sensitive than APOD derived from acetylcholinesterase inhibition after chronic exposure.

Short-term, molecular-based assays help reduce reliance on chronic animal studies

- Molecular changes can be used to set PODs.
- Liver is a potentially useful surrogate for identifying TPODs.
- This approach is applicable to ecological studies.
- Short-term *in vivo* molecular changes can help translate *in vitro* transcriptomics data to chronic adverse effects.

Acknowledgments

Mentor

Leah Wehmas, PhD

CCED/ETTB members

Susan Hester, PhD Michael Hughes, PhD Michael Devito, PhD

Previous ETTB members

Nancy Urbano, PhD candidate Sunita Chutkan, MSc

<u>Reference</u> Rooney J. et al. Tox 2021 (doi: 10.1016/j.tox.2021.153046)

Questions

Several genes overlapped with known genes associated with organophosphate toxicity

Ache was among the overlapped genes across all organophosphate treatments

12