

Classifying and predicting developmentally neurotoxic chemicals using new approach methods and machine learning

Kelly Carstens, PhD Email: Carstens.Kelly@epa.gov

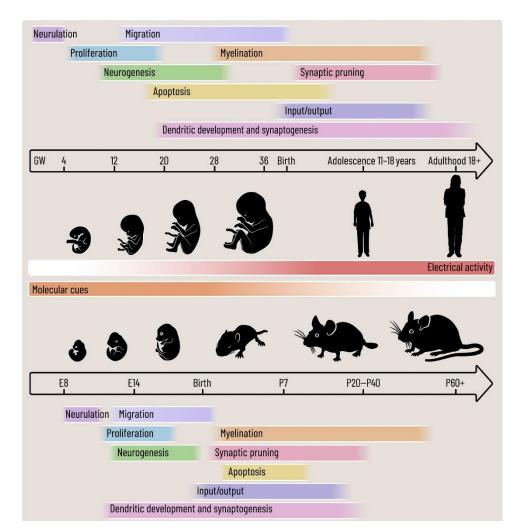
U.S. Environmental Protection Agency Research Triangle Park, NC

Office of Research and Development Center for Computational Toxicology and Exposure Biomolecular and Computational Toxicology Division Computational Toxicology and Bioinformatics Branch The Safety Pharmacology Society 2022 Annual Meeting

Session: Current Status and Future Perspectives in Al-Based Drug Assessment 9/13/22

Conflict of Interest Statement

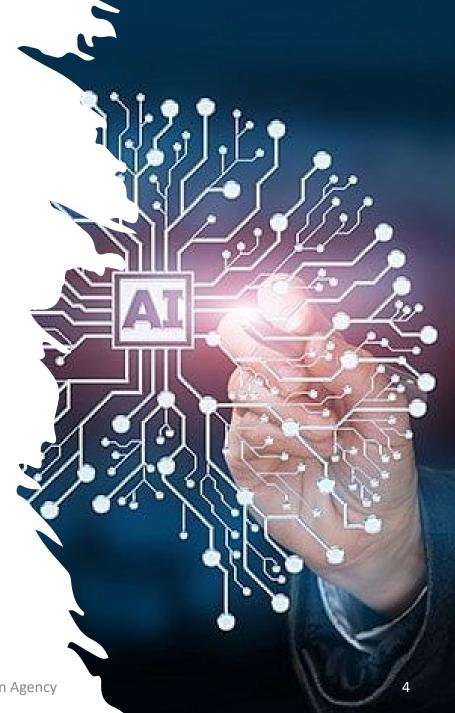
The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.



Developmental neurotoxicity (DNT) new approach methods (NAMs)

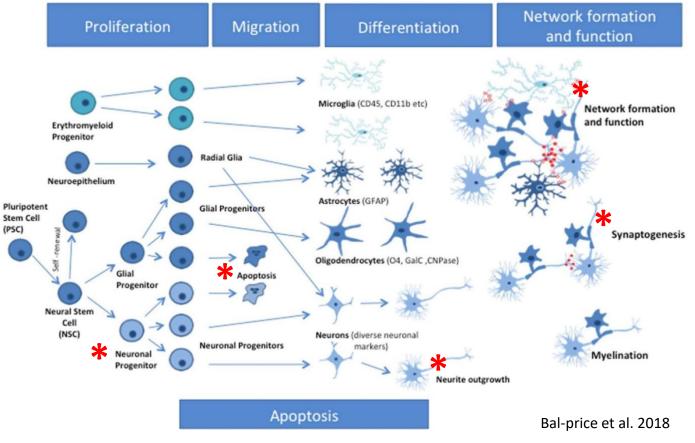
Neurodevelopmental disability is the most prevalent chronic medical condition encountered in pediatrics (Zablotsky et al. 2019).

Both genetic and environmental risk factors have been identified as underlying causes driving this prevalence.


DNT NAMs: multi-dimensional DNT screening assays that cover complex neurobiological space: temporal, different 'key events' in neurodevelopment, cell-types, and species.

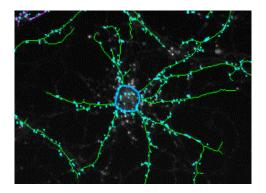
Chini and Hanganu-Opatz. 2021. Trends in Neuro.

Overview


- Can we build a model to classify compounds that demonstrate in vivo DNT bioactivity?
- Can we improve the model performance by reducing the dimensions of the DNT NAM dataset?
- Current limitations to using DNT NAMs and machine learning models to predict DNT.

Strengths of using a high-throughput, multi-dimensional screening battery for DNT

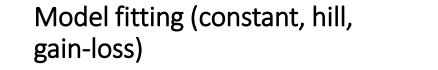
- No single *in vitro* screening assay can recapitulate all critical cellular events of neurodevelopment.
- Some compounds may disrupt specific cellular events at different stages of development.
- Some neural cell-types may be differentially sensitive to perturbation.

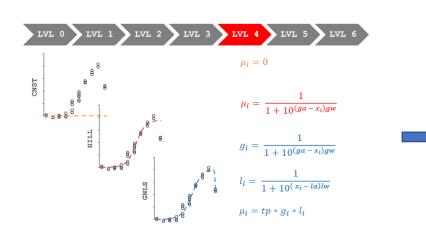

Experimental models in the DNT NAMs battery

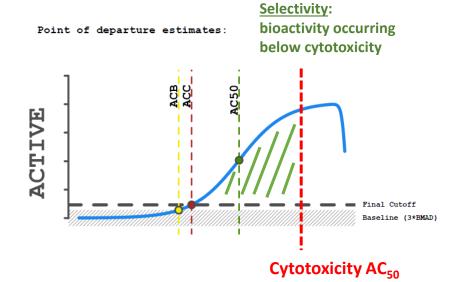
Microelectrode array (MEA) network formation assay (NFA)

Arts tangater 2.04 Die View Jock Selb				10.211				11.40	_		- 0 3
Case: MA 15	1 210		i.	2 20	N.F.	1	1	11 245		-	
			1							Į.	p.
	2 230		hun	22 232	1	Will	Minis				
						NULL	, juu				
Freene Merrol & Typ, Neural ClarConset, Sangiel V State Denster (6 + 530) Drut Denster (50) Drutes Campair	1.255	-lin	11	21.228		4.	L.	71 250	11-	1	Ing
Shared Demo All'S 2000(rev Gable Demo All'))		P				ľ	11				
			#1☆			water chine					Steadates Inen
			***		-				_		- N-10 41 1010

Activity type	Cell Culture
General activity	Primary rat cortical
Network connectivity	neurons (DIV 5, 7, 9, 12)
Bursting	(=;
Cytotoxicity	


High-content imaging


Assays	Cell culture
Neurite Outgrowth (NOG)	Primary rat neurons, human hN2 neural cells
Synaptogenesis and Neurite maturation	Primary rat neurons
Proliferation	Human hNP1 neuroprogenitors
Apoptosis	Human hNP1 neuroprogenitors



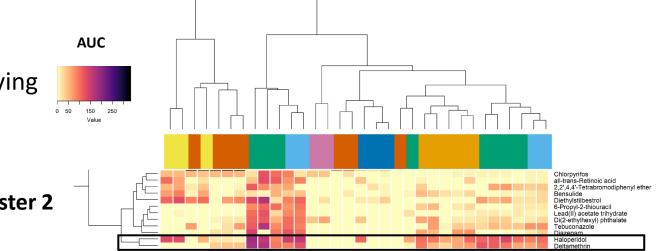
Defining bioactivity using the ToxCast pipeline

Select winning model and


https://cran.r-project.org/web/packages/tcpl/ vignettes/Data_processing.html#level-4 ToxCast pipeline (tcpl) R package (version 2.0.3) (Filer et al. 2017)

Selective bioactivity is informative for identifying patterns of biological activity

Activity Type NOG initiation, rat Synaptogenesis/maturation, rat NOG initiation, hN2 Proliferation, hNP1 General Bursting Network Connectivity


NOG: Neurite outgrowth **AUC**: Area under the curve

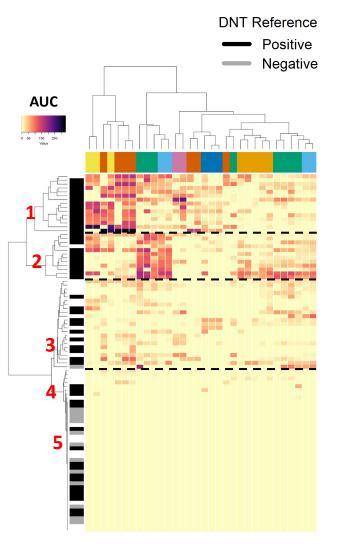
Selective bioactivity is informative for identifying patterns of biological activity

Cluster 2

Activity	Туре
----------	------

- NOG initiation, rat Synaptogenesis/maturation, rat
- NOG initiation, hN2
- Proliferation, hNP1
- General
- Bursting
- **Network Connectivity**

NOG: Neurite outgrowth AUC: Area under the curve


High selectivity	Moderate/ Low selectivity
Network connectivity	NOG (hN2)
Neuronal activity	Bursting

Haloperidol: antipsychotic- Dopamine D₂ receptor antagonist

Deltamethrin: pyrethroid insecticide- voltage-gated sodium channels modulators

Can we build a model to classify compounds that demonstrate *in vivo* DNT bioactivity?

		<i>In vivo</i> evaluati	on chemicals
		Positive (53) Mundy et al. 2015 Aschner et al. 2016 Harrill et al. 2018	Negative (13) Martin et al. 2022.
	Cluster 1 Synap/ prolif/ NOG/ Neurite maturation	14	0
u	Cluster 2 General/ network/ bursting activity/ synap	11	0
Classification	Cluster 3 General/ network activity/ bursting/ synap/NOG	11	1
Clas	Cluster 4 General/ network activity/ bursting/ synap/ NOG	3	0
	Cluster 5 'Inactive/ equivocal'	14	12

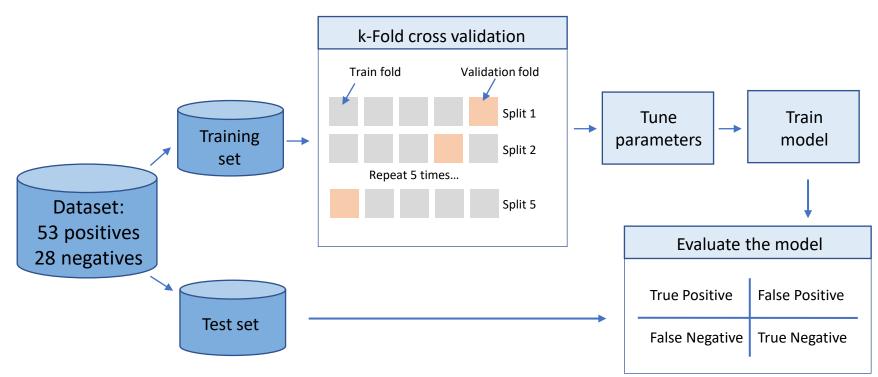
	Positive	Negatives
Selective activity (Clusters 1,2,3,4)	True positive: 39	False positive:1
Inactive/ equivocal (Cluster 5)	False negative: 14	True Negative: 12

Selective bioactivity: Sensitivity= 74% Specificity= 92%

Bioactivity including cytotoxicity:

Sensitivity= 93%

Specificity= 69%



How accurate is our DNT NAMs model in predicting chemicals with evidence of *in vivo* DNT using machine learning?

Dataset:

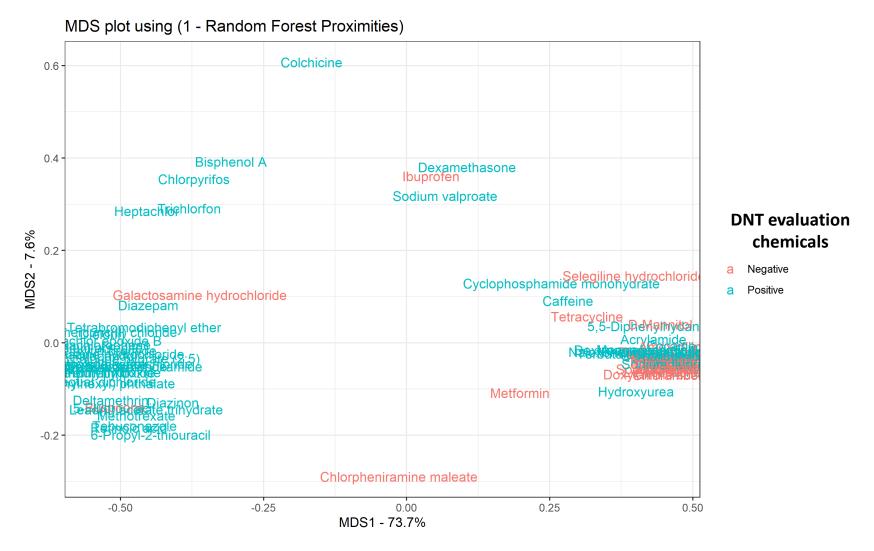
Variables: 19 MEA NFA endpoints and 16 HCI endpoints Data: selective bioactivity; area under the concentration response curve below cytotoxicity Outcome: categorical; evidence of *in vivo* DNT as 'positive' or 'negative'.

Model Development:

Training, Validation, and Testing

How accurate is our DNT NAMs model in predicting chemicals with evidence of *in vivo* DNT using machine learning?

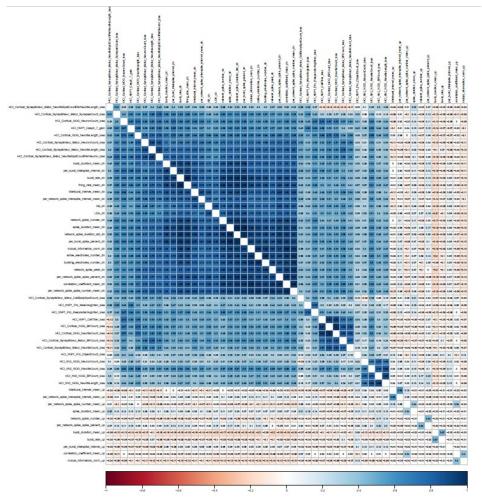
	Туре	Split	Accuracy %	Balanced accuracy %	Sensitivity %	Specificity %
RF	Classification	70/30	78.3	83.3	100	66.7
SVM	Classification	70/30	69.6	73.8	87.5	60.0


Abbreviations: RF, random forest; SVM, support vector machine.

Model Performance:

The random forest (RF) model performed the best and achieved an accuracy of 78.3%, a sensitivity of 100% and a specificity of 66.7%.

How accurate is our DNT NAMs model in predicting chemicals with evidence of *in vivo* DNT using machine learning?



Abbreviations: MDS, multidimensional scaling

Can we improve the accuracy of our RF model by reducing the dimensions of the dataset?

Correlation Matrix

Feature Reduction

- Remove endpoints with zero variance
- Remove highly correlated endpoints

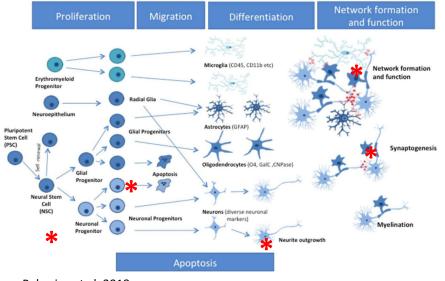
Feature Importance with RF

 Identify most important features (endpoints) for identifying a chemical with evidence of *in vivo* DNT

RF model performance improves when using the 10 most important features in classifying a chemical with evidence of *in vivo* DNT.

Ranked RF feature importance

Rank	endpoints	Importance
1	CCTE_Mundy_HCI_NOG_NeuronCount_loss	1.10
2	CCTE_Shafer_MEA_dev_network_spike_duration_std_dn	0.91
3	CCTE_Shafer_MEA_dev_LDH_dn	0.90
4	CCTE_Shafer_MEA_dev_per_burst_spike_percent_dn	0.89
5	CCTE_Mundy_HCI_Cortical_Synap.Neur_Matur_NeuronCount_loss	0.86
6	CCTE_Mundy_HCI_Cortical_Synap.Neur_Matur_NeuriteSpotCountPerNeuron_loss	0.86
7	CCTE_Shafer_MEA_dev_bursting_electrodes_number_dn	0.82
8	CCTE_Shafer_MEA_dev_network_spike_peak_dn	0.78
9	CCTE_Shafer_MEA_dev_burst_rate_dn	0.78
10	CCTE_Shafer_MEA_dev_per_network_spike_spike_number_mean_dn	0.74


Model Performance

	Туре	Split	Accuracy %	Balanced accuracy %	Sensitivity %	Specificity %
RF	Classification	70/30	87.0	90.0	100	80.3

Current limitations to using DNT NAMs and machine learning models to predict DNT

- Limited number of chemicals screened across all DNT NAM assays
- Imbalanced set of reference chemicals, particularly few chemicals identified as DNT negatives
- Assay suite is currently limited to a subset of neurodevelopmental processes
- Lack of physicochemical information and toxicokinetic data currently incorporated into the model, e.g. blood brain barrier.

Future Directions

- Screen additional chemicals, representing overlapping and diverse chemical structures and biological targets
- Integrate additional assays from our collaborators representing neurodevelopmental processes not currently covered, e.g. neuron differentiation and oligodendrocyte differentiation and maturation.
 - Lab of Marcel Leist @ University of Konstanz
 - Lab of Ellen Fritsche @ IUF- Leibniz Research Institute for Environmental Medicine
- Generate a DNT model that functions to reduce the complexity of a large set of endpoints and identify sensitive endpoints that may be informative for health protective points of departure.

Bal-price et al. 2018

Acknowledgments

Tim Shafer Katie Paul Friedman Melissa Martin Amy Carpenter Theresa Freudenrich Kathleen Wallace Seline Choo Jackson Keever Josh Harrill Megan Culbreth Cina Mack

Contact Info:

Kelly Carstens, PhD U.S. Environmental Protection Agency Research Triangle Park, NC

Email: carstens.kelly@epa.gov Office: 919-541-3834

Assay data: Available in ToxCast invitrodb v 3.5 <u>https://doi.org/10.23645/epacomptox.6062623.v8</u>