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Disclaimer

* The views expressed are those of Dr. Chris Corton
and do not reflect US-EPA policy or product
endorsement by the US-EPA.
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* Gene expression biomarkers
* General information
e Methods used for
e Testing for predictive accuracy
* Screening chemicals

* Biomarkers for screening transcript profiles generated in mice
* |dentification of mode of action

* Biomarkers for screening transcript profiles generated in rats to reduce 2-year
bioassay
* |dentification of mode of action
e |dentification of chemical doses that would cause cancer

* Biomarkers for Tier 1 screening in high-throughput transcriptomics (HTTr) profiling
* E.g., identification of estrogen receptor modulators




SEPA  Gene expression biomarkers — moving towards

regulatory acceptance

Agency
* Biomarker defined as “a characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic
intervention.” (1998, the National Institutes of Health Biomarkers Definitions Working Group)

Genes 1 - XX

* A gene expression biomarker is a short list of genes and associated fold-change values or ranks
used to predict the activity of a factor important in mediating effects of chemicals or toxicity
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Increased
Expression

Decreased
Expression

g‘[ o e 1
e Can be used to Trmo | ‘ o //}
« Identify mode of action ™ R ) =t [ /}/
* Predict tumorigenic potential _.m_.m-»;»-»li [ | J/
* (Determine a benchmark dose) g _.- =t
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* Very few examples of well characterized gene expression biomarkers with known accuracies
* Signature/pathway analysis often used as hypothesis generators

* Only two biomarkers have been considered for regulatory acceptance
* GARDskin/GARDpotency — used to identify skin sensitizers in human myeloid dendritic-like cell *| - =
line; accepted for regulatory studies (OECD TGP 4.106) fal. oW

* TGx-DDI biomarker — used to identify DNA damage-inducing chemicals in TK6 cells; under
review by the FDA




SEPA  Comparing gene lists in BaseSpace Correlation Engine

Environmental Protection
Agency

Biomarker Testing and Screening Total Number of Biosets = ~10,260
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w2 Total Number of In Vivo Biosets = 8233 m Chemical
Yo ¢ Characterize hits .

L o2 Test accuracy o B Circadian Rhythm

(a i biomarker
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predictions H Diet
Disease
* Utilize lllumina’s BaseSpace Correlation Engine = Gender
e Contains ~140,000 microarray lists of statistically " Gene
B Hormone

significant genes

* Valuable computational tools

* Compares all microarray comparisons to each other in a
pairwise fashion using a Running Fisher test

* For each pair-wise comparison: generates the number of * Greatly accelerated construction and analysis of rat
overlapping genes, correlation direction and p-value biomarkers

H Inflammation
M Lifestage

M Stress



SEPRA\ . Correlation analysis using the Running Fisher Test

 |dentification of factors (chemicals, hormones, diets, genes,
etc.) that “look” like your gene list

Does|this|“look like”

Does|this|“look like” the opposite of|t
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* Correlation can be determined computationally using the
Running Fisher test in BSCE
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SEPA Computing directionality and final correlation scores

between two gene lists
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b1+ b2+ (positive) ~ ; \ -
+
Subset 2
20 ) | stz | =
= (b2) e
Subset 2 e =
Ll \ ] =
bi- b2- (positive) - =

* Score(bl, b2) = sum(b1+b2+, bl+b2-, b1-b2+, bl-b2-)
* Running Fisher Test p-value
* Direction of the correlation

* The Running Fisher test p-value is a useful metric of correlation between gene sets

Adapted from Kuperschmidt et al. (2010) PLoS One
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Liver

Tot 9 5543

Liver is a major site for chemical-induced
carcinogenesis in rodents

Marketed Pharmaceuticals in Rats

Histopathology
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Results of 628 two-sex carcinogenicity studies (n =324 rat, n = 304 mouse)
available in ToxRefDB

Studies covered 336 unique compounds (n =307 rat, n =288 mouse), 259 of
which were tested in both species

From Hill et al. Toxicol Sci. 2017 Jan; 155(1):157-169



SEPA  Bjomarkers that predict key events in the livers of mice
and rats

Environmental Protection
Agency

AhR

CAR

Estrogen

Oshida et al. (2015). Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-
Activated Receptor a (PPARa) in a Mouse Liver Gene Expression Compendium. PLoS One.
10(2):e0112655.

Oshida et al. (2015). Identification of Chemical Modulators of the Constitutive Activated Receptor
(CAR) in a Mouse Liver Gene Expression Compendium. Nuclear Receptor Signaling. 13:e002.
Oshida et al. (2015). Screening a Mouse Liver Gene Expression Compendium Identifies Effectors of
the Aryl Hydrocarbon Receptor (AhR). Toxicology. 336:99-112.

Oshida et al. (2015). Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome
by Diverse Factors Is a Common Event. PLoS One. 11(3):e0148308.

Oshida et al. (2015). Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of
the Liver Transcriptome. PLoS One. 2016 11(3):e0150284.

Rosen et al. (2017). PPARa-independent transcriptional targets of perfluoroalkyl acids revealed by
transcript profiling. Toxicology. 387:95-107.

Rooney et al. (2017). Genomic Effects of Androstenedione and Sex-Specific Liver Cancer
Susceptibility in Mice. Toxicol Sci. 160(1):15-29.

Rooney et al. (2018) Activation of Nrf2 in the liver is associated with stress resistance mediated by
suppression of the growth hormone-regulated STAT5b transcription factor. PLoS One.
13(8):e0200004.

Rooney et al. (2018). Activation of CAR leads to activation of the oxidant-induced Nrf2. Toxicol Sci.
167:172-189.

Rooney et al. (2018). Adverse outcome pathway-driven identification of rat liver tumorigens in
short-term assays. Toxicol Appl Pharmacol. 356:99-113.

Corton (2019). Frequent Modulation of the Sterol Regulatory Element Binding Protein (SREBP) by
Chemical Exposure in the Livers of Rats. Comput. Toxicol. 10:113-129.
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* |dentified genes that were
regulated in wild-type mice but
not null mice

* Genes had to be similarly
regulated across the three
chemicals (2 or 3 out of 3) in
wild-type but not the same
direction in null mice
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Recept Signal. 2015
13:e002

Construction of mouse biomarkers using wild-type vs.
nullizygous comparisons

AhR

WT__AhR-Null
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Biomarker

Fold change
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Oshida et al.
Toxicology. 2015
336:99-112



SEIR Determination of biomarker accuracy

Agency

using chemical-induced profiles

Comparison of biomarker to

chemical profiles with known Ranking by Correlation Accuracy
&0 —
outcomes 5. @ e s Determination
n 40-\‘\ O False Activator
T — v d True Negative ™ 1tivsi
-gél - % " & :False H:;w Sens!t!vfty
o — 3 i * Specificity
E VS. E_— %“}_ . . True Suppressor i _
s C — L S \,\C i - . Posntnfe predlrrtn.fe value
s * Negative predictive value
— * Balanced accuracy
+--0-+0
Class _

* Defining activation as —Log(p-value) > 4 and suppression as —Log(p-value) <-4
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predictive accuracy

Mouse Biomarker

PPARalpha

CAR
AhR
Nrf2

Stat5b

Srebp

Number of Genes Mutant mice used

131

83

63

48

144

99

Ppara

Nrli3
Ahr
Nfe2l2, Keap1

Stat5b

Srebfla, Srebflc,
Srebf2, Scap

The mouse biomarkers have excellent

Predictive Accuracy

for Activation

98%

97%

95%

96%

97%

94%

Publication
PLoS One. 2015
10(2):e0112655

Nucl Recept Signal.
2015 13:e002
Toxicology. 2015
336:99-112
PLoS One 2018
13(8):e0200004
PLoS One 2016
11(3):e0150284

omp Tox 10 (2019)
63-77




SEP

Comparison of biomarker to
uncharacterized chemicals

Biomarker
=

Frrrey

Class

-Log(p-value)

Ranking by Correlation
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40
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=
1

. Predicted Activator

. Predicted Negative

. Predicted Suppressor

= UUse of biomarkers in chemical screening

Characterize Hits

Confirm positives
Determine mechanism
of modulation



SEPA

Use of mouse biomarkers for screening

* Expanded and confirmed the factors that
modulate PPARa

e Oshida et al. PLoS One. 2015 10(2):e0112655.

* Predict mode of action of a chemical (sedaxane)
that causes mouse liver tumors

» Peffer et al. Toxicol Sci. 2018 162(2):582-598.

e Database of mouse profiles was limited

-, °* NO opportunity to make predictions of chemical-

dose conditions that would lead to induction of
cancer

- Log (p-value)
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SEPA NAM: Prediction of rat liver tumor induction using
toxicogenomics analysis of short-term exposures

Environmental Protection
Agency

NAM Computational Network of Liver Cancer AOPs

Would a chemical candidate at
Model

dose X cause increases in liver
tumors in chronic studies?

Treatments for 4 to 29d | List of genes and

fold-changes
—ICEETI
at dose X X 3

Versus - I ‘

* Is the dose tumorigenic?

*  Which mode(s) of action is activated?

* Is the mode(s) of action human irrelevant?
* Is a waiver for testing appropriate?

Transcript

Control @@@@ Profiling

Data Used to Construct the Model
* Microarray data
* TG-GATES
* DrugMatrix
e 2-year cancer data
* Lhasa carcinogenicity database

When to use the NAM:

e Screening chemicals in short-term
exposures

« After a (sub)chronic study when liver is
found to be a tissue with histopath
findings of concern




SEPA

Data Used to Construct the Model
TG-GATES microarray data Open 1G-GAIES '
 ~130 chemicals, 8 time points, 3 doses @,J T
A L]
* DrugMatrix microarray data gonm AT ——
e >600 chemicals, 4 time points, 2 doses Egﬂs ™~ /' Wihvshvs;vvv?;v -

* control + 3 dos 0 4d Sd 15d 29d

e Carcinogenicity Potency Database
e Carcinogenicity data on >1500 chemicals in rats
and mice
* Used data to categorize the hepatotumorigenic

potential of chemical-dose comparisons in TG- | o
GATES and DrugMatrix g Dot

Expression  Drugs ond
* Used the data to identify thresholds for
tumorigenicity

DrugMatrix/ToxFX

| Profiles Compounds




Predictive Accuracies of Six

. . Examples of
Gene Expression Biomarkers Balanced  Biomarker Number of
L r e Accuracies Genes Genes
. % — | Cheabna 92% Cdknla, Bax, Ccngl 7
* Context of use: Male rat liver A
. ﬁ 91% Cyplal, Cypla2, Aldhlal 63
 All biomarkers have balanced | Acation
° (GE Biomarker
accuracies above 90% _
e 91% Cyp2bl, Ugt2bl, Ces2c 113
* Genes identified are known to A
s o 9 ;
be regulated by the MIE S P % SPR LGS 35
g (GE Biomarker
=
* Rooney et al., (2018) Tox App! Pharm MIE;
356:99-113 acaion 8% Cypdal, Cptib, Lpl 58
» Corton et al. (2020). A Set of Gene (cETiomanar
Expression Biomarkers Identify Rat Liver MIE;
Tumorigens in Short-Term Assays. Tox Sci. orotoxicy  96%  Bcl2ala, 10004, Tnfrsfi2a 10
177(1):11'26 . (GE Biomarker)
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cancer

* Central premise of AOP framework:
Key events are necessary but not

sufficient

* Induction of an AO depends on the
degree or amount of disruption of

preceding key events

e Can we define activation levels

associated with liver tumor induction

for each of the MIEs?

* Defined the tumorigenic activation

levels for the 6 biomarkers

Genotoxic

Nongenotoxic

Activation

Defining biological activation levels for liver

Activation

Activation

http://www.silverdoctors.com
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expression biomarkers

Divided the chemical-dose conditions
 Tumorigenic and nontumorigenic groups
* Training and test sets

Thresholds defined as the maximum value in the
nontumorigenic group
* Reach an upper limit for activation that would
not cause liver cancer

Generated tumorigenic activation levels for all 6
MIEs

Levels were similar between the training and test
sets

—Log (p-value)
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o

N
an

N
o

—

-

A |ldentification of tumorigenic activation levels for gene

PPARa

; q
Hypothesis: ¢

Liver cancer :

5 through the :

PPARa AOP  §

D L 2

4.16

f"l

0 100 200 300 400 500 600
Bioset Number
Training Set Test Set

Tumorigenic
Nontumorigenic

From Hill et al. (2020) ToxSci 177(1):41-59



Biomarker Activation Levels Accurately Predict Liver Tumors

Identified activation levels for the 6 Test Set
biomarkers associated with tumor
4 day 8 day 15 day 29 day

induction from the TG-GATES l l l l
training set and then applied to a [ | Y v \
tESt SEt Genotox

AhR

CAR
Each red line is a chem-dose ER
condition in which the biomarker PPAR
tumorigenic level is surpassed Cytotox | . 1L |

° P mmm) Sum H | ‘ | ‘ ‘ ‘
] ] Carc Class
Almost all of the tumorigenic <
conditions exceeded one or more 562 Microarray Comparisons
of the 6 activation levels o
.. . Tumorigenic
¢ TESt SEt: 100% SenSItIVIty, 93% Nontumorigenic
Tumorigenic actlyatlon levels were specificity, and a balanced accuracy
rarely exceeded in any of the
of 97%

nontumorigenic conditions
From Hill et al. (2020) ToxSci 177(1):41-59



SEPA NAM identifies chemical-dose pairs that are
tumorigenic in the liver using TempO-Seq

Environmental Protection
Agency

800 DET1 400 DEHP
 Examined 16 chemicals at up to 10 To0 00
. -2 o 600
doses; 5d exposures (Gwinn et al., o = 50 L
. ° = 400 -
2021 ToxSci) g — 2 200 f.—"
2 200 — o 20—
= 100 = 100
. . . =< _— = o e —— =
* Liver gene expression analyzed using - 4
-Emﬂ' 100 200 J00 400 300 GO0 -2 200 400 =11 800 1004 1200
full genome Tempo'seq Dose (mg/Kg) Dose (mg/Kg)
. e 800 Abthujone 800 Acrylamide
* Model correctly identified all 700 |[& Genotox | [ Tumonigenic 700
. . . =) e AhR H @ 1 i o
tumorigenic chemicals Xoolle car  [|x Nortumorigenic g
2400 ER © 400
-5’300 L] EPARE] _5300
. o |® Cytotox
« Balanced accuracies = 74-91% £ 0o | i lf:f 200
depending on the tumorigenic _@%ﬁlé _wgh—'—-‘éﬁ—ﬁ-
activation level used and whether o s_qm0 s 20 250 [ B S S T B I
Dose (mg/Kg) Dose (mg/Kg

individual chem-doses were
considered or all doses for a chemical

Ledbetter et al., submitted to management



SEPA NAM: Prediction of rat liver tumor induction using
toxicogenomics analysis of short-term exposures

Environmental Protection
Agency

Will a chemical candidate at NAM Computational Network of Liver Cancer AOPs
dose X cause increases in liver Model i
. . . Gene Expression
tumors in chronic studies? silomarkers
"
List of DEGs and I
Treatments for 4 to 29d fold-changes III

R eR| | ||||||

Versus ‘ I ‘

Control @@ . -
S 2 5 Tumorigenic Activation Levels * Is the dose tumorigenic?

—_— * Which mode of action is activated?
] . % : = g;\ \\ o i_ \ e o ° .
Questions still to be addressed: R e Is the mode of action human irrelevant?
- Can we improve accuracy by incorporating e * Is a waiver for testing appropriate?
e More data? %\\ %tq i as= e Emerging Systems Toxicology for
. A greater diversity of chemicals? e e b the Assessment of Risk (eSTAR)

Future Studies: Committee
e Studies conducted through the HESI
eSTAR Carcinogenomics Workgroup

*  Wild-type and null rat comparisons?




SEPA NAM: Prediction of rat liver tumor induction using
toxicogenomics analysis of short-term exposures

Environmental Protection
Agency

Will a chemical candidate at dose X cause NAM Computational Network of Liver Cancer AOPs
Model 2

increases in liver tumors in chronic studies?

Treatments for 4 to 29d | List of genes and

. fold-changes
romex 65 636363 !
at dose X &

Versus - I ‘

* |s the dose tumorigenic?

* Which mode(s) of action is activated?

* |sthe mode(s) of action human irrelevant?
* Is a waiver for testing appropriate?

Transcript

Control @@@@ Profiling

When to use the NAM:

e Screening chemicals in short-term
exposures

e After a chronic study when liver is found to
be a tissue with histopath findings of
concern




Biomarker Activation Levels Accurately Predict Liver Tumors

|dentified activation levels for the

6 biomarkers associated with
tumor induction from a training

set and then applied to a test set  Genotox
AhR

. CAR

Each red line is a chem-dose ER
condition in which the biomarker PPAR
tumorigenic level is surpassed Cytotox
& P mmm) Sum

Almost all of the tumorigenic

Carc Class

conditions exceeded one or more

of the 6 activation levels

Tumorigenic activation levels
rarely exceeded in any of the
nontumorigenic conditions

Test Set

4 (ilay 8 cllay 151day 291day
|

<

562 Microarray Comparisons

Tumorigenic

* Test set: 100% sensitivity, 93% Nontumorigenic

specificity, and a balanced accuracy
of 97%

From Hill et al. (2020) ToxSci 177(1):41-59



€EPA  Application of Biomarkers and Activation Levels to
Liver Tumorigens

Agency

* Chemicals examined in the TG-GATES study in male rats for 15d at 3 doses

B Carbamazepine Carbon tetrachloride

200 ey 300 *Genotoxicity
150 -CAR / 250 | AhR B Nontumorigenic
.2 — 100 ':E:‘Iﬁﬂﬂzxicit}'.. —1 | — -T“"‘_:_f-_ = 200 EQR Uncertain
q:J 2 s 150 *PPARa B Tumorigenic
20 %’ NV /ﬂ_ bl i = »Cytotoxicity
g 5 50| = 0 A
s = 00 v [— _50’_ —_— Pink = conditions predicted to be tumorigenic
- g 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
L &
s Methapyrilene Simvastatin . opo
%’ § 250 " * Approach identifies the MOA and
g s 250 the lowest tumorigenic dose
o < 150 200
0 100 o —+ — - 150 ] ] .
I 100 * Confidence would increase with
7 o
olt ol greater numbers of doses
=50

0 20 40 60 80 100 120 2% 50 100 150 200 250 300 350 400 450 examined
Chemical Dose (mg/kg/day) From Hill et al. (2020) ToxSci 177(1):41-59




United States

SEPA NAM: Prediction of rat liver tumor induction using

Environmental Protection
Agency

Will a chemical candidate at dose X
cause increases in liver tumors in
chronic studies?

Treatments for 4 to 29d List of DEGs and
fold-changes

e e

Versus ‘ I ‘

Questions still to be addressed:

e Can the methods be used for (targeted)
RNA-Seq?

e Can we make predictions using in vitro
models?

NAM Computational
Model

Gene Expression
Biomarkers

Tumorigenic Activation Levels

Genotoxicit ty

Ay p
(o

/
/
/
J

Running Fisher Test

o1 02 ostre)

4, &\ +

- iy & Swset2 |

Fulls — il Fullset2
(1) N - - . 2

R Subss Subset2 -

1) 2)
o2 osin)
b1+b2+, b1+b2-, b1-b2+, b1-b2-)

toxicogenomics analysis of short-term exposures

Network of Liver Cancer AOPs

* |s the dose tumorigenic?

* Which mode of action is activated?

* |sthe mode of action human irrelevant?
* Is a waiver for testing appropriate?

Emerging Systems Toxicology for

the Assessment of Risk (eSTAR)
Future Studies: Committee

e Studies conducted through the HESI eSTAR
Carcinogenomics Workgroup
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Summary (First Part)

* The NAM can be used to identify liver tumorigens
* |dentification of mode of action
* |dentification of chemical doses that would cause cancer

* In multiple studies have examined ~250 chemicals (~50 caused
liver tumors)
* Accuracy was ~75-95% depending on the dataset used
* Accuracy is independent of platform used to assess gene
expression
* Missed only two positives
* Acetamide
e Ethionine
* Provides opportunities to build additional biomarkers for
prediction

Threshold %

800

700
600
300
400
300
200
100

-1001

NAM Computational
Model

Gene Expression
Biomarkers

Running Fisher Test

' A
=l Ptz
[
sz |-
=
Scaroibl, 52)+ sumiBtei2e, bish2. bi-62r, b1-4624

Fulsat 1
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2065 200

00 600 800
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* ToxCast assays cover many genes and pathways, but do not provide

complete coverage of biological space.

Gene Coverage Pathway Coverage*

n =320 genes \’

B ToxCast
m Not in

ToxCast

*At least one gene from
pathway represented

USEPA Strategic Vision and Operational Roadmap:

Tier 1 strategy must cast the broadest net possible for capturing
hazards associated with chemical exposure.

Global gene expression provides a robust and comprehensive
evaluation of chemically induced changes in biological processes.

Increasing efficiency and declining cost of generating whole
transcriptome profiles has made high-throughput transcriptomics
(HTTr) a practical option for determining bioactivity thresholds in in
vitro models.

High-throughput toxicity testing

A strategic vision and operational road map for computational toxicology at

the U.S. Environmental Protection Agency

-

Tier 1 \

Gene Expression

Multiple cell types

Transcriptomic Assay +/- metaboliccompetence

High-Throughput ‘

'

No Defined Biological
Target or Pathway

' Biomarkers

Defined Biological Target
or Pathway ‘

\
e

’ SelectIn Vitro

'

Assays

‘ } Orthogonal confirmation

D%
N

Tier 2

J

‘/

.

!

Existing AOP

!

in Vitro
Assays for other KEs
and Systems Modeling

J |

NoAQP

!

Organotypic Assays and
Microphysiological
Systems

J}

Tier 3 \

Identify Likely Tissue,
Organ, or Organism Effect
and Susceptible Populations

/

Estimate Point-of-Departure
Based on Pathway
Transcriptional Perturbation

r

Estimate Point-of-Departure
Based on AQOP

Estimate Point-of-Departure
Based on Likely Tissue- or

Organ-level Effect without AOP

Joshua Harrill, EPA



€EPA  Using gene expression biomarkers to identify molecular
targets of chemicals in transcriptomic studies

[

Gene
Lists &
In vitro e
screening &) Concentratlon-response
EPA MCF-7 Sc_reen 1000’ of L [l ID Chemical targets Tier 2 HT
~1600 Chemicals chemicals Cell Line 1 m S— . > S
8 doses N ‘. =Y > O > Chemical (.:ree.n
6 hours = g g— E Prioritization Validation
N S () .9
Cell Line..... I_ = m
~20K -
Genes

e Use predictions for
* Chemical prioritization as part of Tier 1 screening
=R * Followed up with short-term tests in organotypic cultures or animals




€EPA  Using gene expression biomarkers to identify molecular
targets of chemicals in transcriptomic studies

Agency

Cell Line ....

in factor-null cell

g lines
e Use predictions for
 Chemical prioritization as part of Tier 1 screening
* Predict molecular initiating events and key event perturbations in adverse outcome pathways
* Followed up with short-term tests in knockout/knockdown cell lines, organotypic cultures or animals
* Ultimate Goal: Move from hypothesis generation to final predictions to minimize further testing

Biomarkers
1,2,3,....
Gene ™
Lists | .
_ : - Scoring
In vitro
scree;ing g
1000’s of N/ U) |
chemicals Cell Line 1 O v }_)g_)g Ra n k
AOP1 H
~ > 0 > — Prioritization
Cell Line 2 0P3’4| - .
- a0p2 [iuea}—{ies | Additional testing
()
I_




SEPA  Biomarkers that predict key events in human cells in vitro

Environmental Protection
Agency
Endocrine disruption
* Ryan et al. (2016). Moving Toward Integrating Gene Expression Profiling Into High-Throughput Testing: A Gene Expression Biomarker
I Accurately Predicts Estrogen Receptor a Modulation in a Microarray Compendium. Toxicol Sci. 151(1):88-103.

Androgen receptor: Rooney et al. (2018). Identification of Androgen Receptor Modulators in a Prostate Cancer Cell Line Microarray

. 162
» . I Robarts et al. (2023). Characterization of a 50-gene estrogen receptor biomarker. In preparation. I

DNA Damage Response — TGx-DDI Biomarker

* Corton et al. (2018). Using a gene expression biomarker to identify DNA damage-inducing agents in microarray profiles. Environ Mol Mutagen.
59:772-784.

* Cho et al. (2019). Assessment of the performance of the TGx-DDI biomarker to detect DNA damage-inducing agents using quantitative RT-PCR
in TK6 cells. Environ Mol Mutagen. 60:122-133.

* Corton JC, Witt KL, Yauk CL. (2019). Identification of p53 Activators in a Human Microarray Compendium. Chem Res Toxicol. 32(9):1748-1759.

Epigenetic effects — HDACi and BRDi

* Corton et al. A Gene Expression Biomarker Identifies Inhibitors of Two Classes of Epigenome Effectors in a Human Microarray Compendium.
Chemico-Biological Interactions. 365:110032.

Stress factors

* Cervantes PW, Corton JC. (2021). A Gene Expression Biomarker Predicts Heat Shock Factor 1 Activation in a Gene Expression Compendium.

Chem Res Toxicol. 2021 34(7):1721-1737.

Jackson AC, Liu J, Vallanat B, Jones C, Nelms MD, Patlewicz G, Corton JC. (2020). Identification of novel activators of the metal responsive

transcription factor (MTF-1) using a gene expression biomarker in a microarray compendium. Metallomics. 12(9):1400-1415.

Korunes KL, Liu J, Huang R, Xia M, Houck KA, Corton JC. (2022). A gene expression biomarker for predictive toxicology to identify chemical

modulators of NF-kB. PLoS One. 17(2):e0261854.

* Rooney JP, Chorley B, Hiemstra S, Wink S, Wang X, Bell DA, van de Water B, Corton JC. (2020). Mining a human transcriptome database for
chemical modulators of NRF2. PLoS One. 15(9):e0239367.

Used genetic profiles to develop the biomarker

$ 1 3

n progress
HIF1a, Unfolded Protein Response (ATF4, ATF6, XBP1), Cell Proliferation, AhR, Epigenome Effectors




SEPA  Use of an estrogen receptor biomarker to identify ER

Environmental Protection

modulators in human cells in vitro F
%'sﬂ EE e E || - m;
& - * Accurately replicates the predictions * Used to identify BPA alternatives
of the ToxCast ER Model based on 18 with estrogenic activity (Mesnage et
HTS assays (Ryan et al. Toxicol Sci. al. Toxicol Sci. 2017 158(2):431-443)
2016 151(1):88-103) o -
* Used 7 agonists and 3 sl 8k i Ak
antagonist to identify predictive T LI AR % J X
geENES § | R R T iy TR c.
* Used profiles generated in MCF- T ! gt INEEEEE RN
7cells B S S S _ * Methods could be used to identify
* 46 gene biomarker * Used in screening in an MCF-7 positives in the rodent uterotrophic
_ compendium (Rooney et al. Chem Res assay (Corton et al., Chem Biol Interact.
* Ryan et al., 2016 Toxsci Toxicol. 2021 34(2):313-329) 2022 363:109995)




SEPA  Use of an estrogen receptor biomarker to identify ER

Environmental Protection
Agency

Agonist Antagonist

&

e
o & f s“P gt
Ry
E

G
MYBL1
33333
RET

A ChiP-seq
A ChlA-PET

* Used 7 agonists and 3
antagonist to identify predictive
genes

* Used profiles generated in MCF-
7 cells

* 46 gene biomarker

* Ryan et al., 2016 ToxSci

BPAF
BPA
BPC

4 4-BPF

BPAP

BPS

BADGE
24-BPF
P201
D-8
2.4'-BPS

TGSA

BPS-MAE
BPS-MPE

BTUM

DDS

modulators in human cells in vitro

A a =
A ¢ @ %%u%qﬂemarker
A ® A Lowest Median Pathway
r's ®
A L]
A ®
A ®
A ®
A
A E)
A
A
10° 10 10" 10 10'
BMC uM

* Used the ER biomarker to derive potencies for data-
poor BPA alternatives (Matteo et al., ToxSci. 2023. In
press.



SEPA Use of an estrogen receptor biomarker to identify ER
modulators by high-throughput transcriptomics (HTTr) screening

Environmental Protection
Agency

42

10 20 30 40

_—Log(p-value)
* Replicates the predictions of the ToxCast ER Model based on 18

-30 -20

o : = o EE 1 (-~ | Using the ToxCast ER model as
Agonists  Antagonists  Activation  Knockdowns = S 2 (kN 03| e ® the reference data set:
t =13 . < * Sensitivity = 75%
o S R +  Specificity = 90%
g <7 Sy | * Balanced accuracy = 82%
o
N

5o chanee HTS assays
T T 30 | -

— b P Using the NCATS Tox21 ER trans-
50-gene biomarker built from profiles of 3 N “ER | activation assays as the reference
* 4 ER agonists o 10 L data set:

* 4 ERantagonists é % 20 40 eﬁ.mmso ’ SenS{t!v!ty =93%
4 constitutively active ER mutants > 10 * Specificity = 98%
« 4 knockdowns of ESR1 expression — 20 * Balanced accuracy = 96%

Bioset Number

Excellent predictive accuracy with HTTr TempO-Seq data (Robarts
et al., in prep)




SEPA |dentification of ER modulators using an estrogen receptor

Environmental Protection

biomarker in MCF-7 cells

* Examined transcript ER Activators

changes in MCF-7 cells
treated with ~1600
chemicals at 8
concentrations (~12,800
comparisons)

* Compared the profiles to
the 50-gene estrogen
receptor (ER) biomarker

* 2D hierarchical clustering
of chemicals across 8
concentrations

ER Suppressors




SEPA ER activators regulate ER biomarker genes in a
structure-dependent manner

Agency
ation Group

L
s%
n [l >
%5] m
A
o
I EEEEN
m

* Examined transcript i 7 S a Gl
i : T~ . ,
changes in MCF-7 cells " S oL N et \
treated with ~1600 - | - Bisphenols NI |i>
chemicals at 8 I / Ditee ? e ”' 100900~
concentrations (~12,800 i L, =~ A:'"' ———
comparisons) i P g : L A
C d the profiles to i - | Misc
* Lompare ‘ activators : -
the 50-gene estrogen zg ool Results c-ons-lstent Wl'th
receptor (ER) biomarker I ]  Agonists induce different
”Ei S 5 conformations of the receptor
= m e iG0 ek . i i i
- 2D hierarchical clustering SO NPeOL Classical ER con.format.lon determines which
of ~120 chem- = . | estropens co-activators interact
. . ] E%” oo N e 8 * ER-co-activator complexes determine
concentration pairs that %i _, JeopPes Hich t‘p tod
. ' which genes are activate
activated ER =1 g - =
= | iy b
[;E . ooy O GR and PR
-1 — ' )
2 ﬂ e O agonists
R A Robarts et al., in preparation




SEPA  Many ER suppressors appear to be AhR activators

Environmental Protection
Agency

. . oo © Cluster 5
 Examined transcript —

changes in MCF-7 cells — .
treated with ~1600
chemicals at 8 =
concentrations (~12,800
comparisons) 1

Prodiamine

Tamoxifen citrate

Indene

1-Nitronaphthalene

Tefluthrin

4 . 4'-(Isopropylidenebis(4. 1-phenyleneoxy))}dianiline
Levothyroxine

Indole

C.l. Solvent Orange 7
N.N-Dicyclohexyl-2-benzothiazolesulfenamide
1-Naphthol

Dibenz{(a.h)anthracene
Benzo(k)fluoranthene
3-Methylcholanthrene

C.|l. Scolvent Yellow 14

Dithianon

SuU-5416

5.6-Benzoflavone

Perfluorohexanoic acid
Indeno(1.2.3-cd)pyrene
1,4-Dihydroxyanthracene-9,.10-dione

 Compared the profiles to s
the 50-gene estrogen
receptor (ER) biomarker

e 2D hierarchical clustering
of chemicals across 8

concentrations E =

~— ON OO < O O I~ O

Robarts et al., in preparation




€EPA  |dentification of AhR activators in an HTTr screen
in MCF-7 CE"S « Compared the ~12,800 profiles to the AhR biomarker

Agency
l J AhR Biomarker =
* Built and characterized a gene expression IJ
biomarker to identify AhR activators in ’ ARR Cluster 4
MCF-7 cells |

#

Il
Ll

Benzo(b)fluoranthene
3,3",5-Triiodo-I-thyronine sodium salt
Indene

2,3-Diaminotoluene
1,2-Phenylenediamine

I

1-Naphthylamine
Naptalam
4-Chloro-1,2-diaminobenzene
Dithianon

1-Naphthol
Napropamide
Indeno(1,2,3-cd)pyrene
C.l. Solvent Orange 7
1,4-Dihydroxyanthracene-9,10-dione
3-Methylcholanthrene
Dibenz(a,h)anthracene
SU-5416
Benzo(k)fluoranthene
5,6-Benzoflavone

C.I. Solvent Yellow 14
Benz(a)anthracene
SSR161421
Hexachlorophene
2-Methyl-5-nitroaniline
3,5,3'-Triiodothyronine
SAR377142
8-Hydroxyquinoline
Indole

* 16 genes consistently regulated by 12 AhR {
activators and in the opposite direction by |
knockdown of AhR using gene-specific ﬁ
siRNA

Niclosamide

Fluvastatin

2-Naphthalenol
2-Amino-5-azotoluene
Levothyroxine

Cupferron

Carbaryl

Chlorobenzilate
2,7,8,9-Tricyclazole

Flavone
1-Amino-2-methylanthraquinone
Propiconazole

2-Naphthylamine
3,3"-Dichlorobenzidine dihydrochloride
Carbazole

D&C Red 9

lodine

Leflunomide

C.I. Pigment Red 122
Indole-3-acetic acid
Octachlorodibenzo-p-dioxin
N,N-Dicyclohexyl-2-benzothiazolesulfenamide
1-Nitronaphthalene
4-Chloro-2-methylaniline
2-Mercaptobenzothiazole
Morpholine

* Compared predictions to NCATS Tox21 AhR
transactivation assay carried out in HepG2
cells

* Sensitivity =73%
» Specificity = 59%
* Balanced accuracy = 66%

e I ey o

e 7 out of the 29 were positive in the ToxCast — N <O © O
ATG_Ahr-Cis_up assay carried out in HepG2 :

cells. -3 —— , :
— N w oo D Robarts et al., in preparation




SEPA

United States .
Environmental Protection
Agency

Examined transcript changes in MCF-7
cells treated with ~1600 chemicals at 8
concentrations

ER Activation

Compared the profiles to the estrogen
receptor (ER) and aryl hydrocarbon 0
receptor (AhR) biomarkers

ER Biomarker
-log(p-value)

-20

Direct -40
inhibition :
@ ™ CYP1A1, CYP1B1 via iXREs axﬁ? z

E2 synthesis é
& metabolism

> CYP19 (Aromatase) /

Synthesis of an

Cifﬁgidegradatno" inhibitory factor -
- - w
proteasome

From Nuclear Receptor Signaling 4(1):e016

AhR activators suppress ER responses

AhR Biomarker vs ER Biomarker Activity

[Dehydroepiandrosterone]

dI-Norgestrel

1
{4-Hydroxybenzophenone]

1 N\

I 1
17alpha-Estradiol 1
stradiol cypionate
,////I/

’// // /

/

5,6-Benzoflavone ”444/’1-Naphthol {C.I. Solvent Orange 7

Activation of AhR and suppression

|
|
. of ER
1

:

0 ! 5 10 15 20
AhR Biomarker
-log(p-value)
AhR Activation

Robarts et al., in preparation



United States . S u m m a r 7000 ppm Sedaxane 14000 ppm Sedaxane
Environmental Protection .

Agency : [Jpay 2 h
Hlﬂ =2
. . . _;“':ﬁr — I
* Gene expression biomarkers have multiple uses b Hl” UIU
* Biomarkers for screening in mice NAM Computational
. fe . . Model
* |dentification of mode of action Gene xresion
h
. . . . lll
* Biomarkers for screening in rats to reduce unnecessary testing |||||
* Identification of mode of action N I
* |dentification of chemical doses that would cause cancer B
* Biomarkers for Tier 1 screening in high throughput transcript profiling
e Estrogen receptor biomarker BExsE
e Used to identify MIE modulation
* Potential for replacing HTS assays
* Potential for replacing the uterotrophic assay
* Uncovers interesting biology B |
* Biomarker gene expression pattern determined by o =

chemical structure IR
* |dentified AhR-ER interactions

kkkkkkkkkkkk
aaaaaaaaaaaaa

AhR Activation
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