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 Advancing the pace of chemical risk assessment necessitates the development of new approach methodologies
(NAMs) that provide meaningful information on chemical risk without the need for whole animal testing [1].

 A potential NAM based on the TempO-seq targeted RNA-seq platform has been proposed which uses high-
throughput transcriptomic (HTTr) profiling to rapidly screen and prioritize large numbers of environmental chemicals
in vitro [2].

 We developed the high-throughput transcriptomics pipeline (httrpl) software package, an analytical pipeline that
efficiently and reproducibly performs a complete analysis of targeted RNA-seq experiments and stores output from
multiple levels of analysis within a standardized database management system.

This poster does not necessarily represent the views or policies of the U.S. Environmental Protection Agency,
nor does mention of trade names or products represent endorsement for use.

Quality Control (QC) Metrics in httrpl
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Software Software Type Version
Python Programming language 3.6.8

R/RStudio Programming language 3.6.0
MongoDB Database program 4.2.6

HISAT2 Alignment program 1.9
SAMtools Sequencing Utility 

program

2.1.0

DESeq2 R package 1.24.0
tcplfit2 R package 0.1.3

Table 1. httrpl primary software and tools Alignment Length
Mismatches 47 48 49 50

0 8 40 37 0
1 0 4 8 24
2 0 0 14 12
3 0 0 0 2

Table 2. Highly homologous probes

Figure 3. httrpl was developed using HISAT2 as the sequence aligner. To demonstrate that
the selection of HISAT was appropriate, an important quality control step was to compare the
sequence alignment performance of HISAT2 against other aligners. Here, we compared the
implementation of HISAT2 in httrpl against the STAR sequence aligner in two alignment
modes (Local [3] or End-to-end alignment) using sequence data from two reference RNA
materials, universal human reference RNA (UHRR) and human brain reference RNA
(HBRR), that were both included in two chemical screens in HepaRG and U2OS cells. (A)
Comparison of percent mapped reads using HISAT2, STAR Local, and STAR End-to-end
using UHRR and HBRR reference samples from the HepaRG and U2OS screens shows
HISAT2 and STAR Local having the highest mapping percentage. Similar results in alignment
performance for TempO-seq data across different sequence aligners has been reported
elsewhere [4]. (B) Scatterplots of the probe-wise mean log2 counts per million (CPM) for
UHRR and HBRR reference samples between HepaRG and U2OS cells demonstrate high
correlation in log2 CPM values between different studies using the same reference material.

Figure 4. The TempO-seq platform uses 50 nucleotide probes
to quantify gene expression allowing the possibility for high
homology probes to exist which may lead to inaccurate probe
count estimates during alignment. We performed a standard
nucleotide BLAST (blastn) on the TempO-seq probe set (human
whole-transcriptome v2.0) and identified 149 highly homologous
probes with 47 or more identical nucleotides including a set of
37 probe pairs that differed by only one nucleotide (Table 2). We
next examined the correlation of probe-wise mean log2 CPM
values between HISAT2, STAR Local, and STAR End-to-end
(B). The STAR Local algorithm, which is known to have a higher
tolerance for soft-clipping compared to HISAT2 [5], was unable
to give accurate counts for the 37 high homology probes
(denoted as red points), whereas HISAT2 and STAR End-to-end
were able to count reads that aligned to these probes.

Figure 5. QC metrics used to determine sample quality in httrpl. (Table 3)
General description of the various QC metrics that are calculated within httrpl.
Two metrics (log10_n_reads_mapd and mapd_frac) are standardized, whereas
the remaining QC metrics are empirically derived (3*IQR). Samples failing one
or more QC metrics are flagged and not considered for downstream analysis in
httrpl. Scatterplots of log10 mapped reads and mapped fraction for
environmental chemical screens in HepaRG and U2OS cells, respectively, are
shown in (A), with dashed lines indicating QC thresholds. Distributions of
mapd_frac, n_cov5, n_sig80, gini_coef, and top10_prop QC metrics for UHRR,
HBRR, and test samples (test chemicals, vehicle controls, and reference
chemicals) between HepaRG and U2OS screening datasets show that the
distribution of QC metrics, as well as the QC thresholds (indicated by dashed
lines or X points) differ by reference RNA material as well as by cell line (B).
After applying these QC criteria, 97% and 95.5% of test samples would pass
QC for the HepaRG and U2OS screening datasets, respectively.

HepaRG U2OSA.
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QC Metric Description Threshold
log10_n_reads_mapd Total number of reads mapped 

(log10)
10% of target read 

depth
mapd_frac Fraction of total reads mapped 0.5 (50%)

n_cov5 Number of probes with >= 5 counts Lower 3*IQR
n_sig80 Minimum number of probes that 

capture 80% of total reads
Lower 3*IQR

gini_coef Area under the CDF of probe 

counts
Upper 3*IQR

top10_prop Proportion of total reads in top 10 

highest signal probes
Upper 3*IQR

Table 3. Summary of httrpl QC metrics
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 httrpl provides a self-contained workflow and database schema tailored for high-throughput
chemical screening studies that use TempO-Seq or similar targeted RNA-Seq platforms:
 All source code for httrpl is managed through git/BitBucket and will soon become publicly

available.
 Data are stored and managed using MongoDB, with a standardized schema.
 The pipeline can be installed locally or as a Docker container image (Docker v20.10.12)

to ensure stability and reproducibility across various compute environments.
 The HISAT2 aligner used in httrpl performs similarly to other publicly available RNA-seq

sequence aligners, with the benefit of correctly aligning highly homologous probes.
 Aside from total mapped reads and mapped fraction, QC metrics in httrpl vary by sample

type and cell line and should be recalculated for each dataset.
 httrpl allows for flexible estimation of DESeq2-moderated fold changes allowing the user to

determine how conservative of an approach he/she/they want to have for a given study.
 Future development work on httrpl will include ‘database-free’ features for smaller scale

datasets and incorporating the signature/pathway scoring and concentration-response
modeling to the codebase.
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Figure 6. The DESeq2 package (v1.24.0) used in httrpl has four available shrinkage methods: no shrinkage, normal shrinkage, apeglm,
and ashr. Shrinkage adjusts fold change estimates by controlling for low signal and/or highly variable probes by ‘squeezing’ fold changes
for these probes towards zero. Volcano plots using data from the HepaRG dataset of a reference chemical tested at 0.1 µM (A) or 10 µM
(B), which are considered as having low and high transcriptional bioactivity, respectively, demonstrate the effect of different DESeq2
shrinkage methods on estimated fold changes. More shrinkage is observed in data from the lower bioactivity concentration, with apeglm
and ashr having the most profound effects. By default, httrpl uses the ‘normal’ shrinkage method, which appears to offer a good balance
between retaining possible biologically-relevant transcriptional signal while also controlling for probes with low expression and high
variability. Significantly differentially expressed probes (denoted as red points) were defined as having a P-value ≤ 0.01 and absolute log2
fold-change ≥ 1.

1. Sample keys containing all treatment and experimental design information
are formatted and pushed into the httr_well_trt mongo collection.

2. The Probe Manifest for a given TempO-seq study is retrieved from the
vendor and pushed into the httr_probe collection.

3. Fastq files are received from the vendor and are aligned and counted;
metadata are stored in the httr_raw collection and aligned counts are stored
in the httr_counts collection.

4. Quality control (QC) metrics are calculated, samples are flagged for quality,
and all this information is stored in httr_counts_qc.

5. Data are combined across httr_well_trt, httr_counts, and httr_counts_qc
into the httr_well collection, which acts as the primary staging area for
downstream analysis using tools such as BMDExpress or the httrpl
DESeq2 and concentration-response modeling analysis.

6. To continue the standard httrpl analysis, treatment group comparisons are
defined based on study design and stored within the httr_trt_grp_cmp
collection.

7. Differential gene expression analysis is performed on httr_well count data
using the treatment information within httr_trt_grp_cmp and DESeq2
moderated log2 fold changes are stored in the httr_deg collection.

8. Additional downstream signature analysis and curve fitting with tcplfit2 can
be performed. Note: We are currently developing the MongoDB schema to
capture signature concentration-response results.

Data Management and Primary httrpl Workflow

Bioinformatics Pipeline

Figure 1. httrpl bioinformatic pipeline.

Figure 2. httrpl consists of a hybrid Python and R/RStudio codebase using various
open-source tools (Table 1) and is implemented both at the command line and in
R/RStudio. Data are stored and managed in a standardized database schema using
MongoDB (mongo collections are shown as blue boxes).
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