Using Cheminformatics Approaches to Develop a Structure Searchable Database of Analytical Methods

Antony Williams, Greg Janesch, Sakuntala Sivasupramaniam, Brian Meyer and Erik Carr

Center for Computational Toxicology & Exposure, U.S. Environmental Protection Agency

Disclaimer

 The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

- This presentation is on a proof-of-concept tool in development
 - NOT yet publicly available

Building a Methods Database

- Simple Vision: I want to find the best method(s) associated with a chemical and/or class of chemicals
- Answer the question "I cannot find a method for my chemical" HELP
- The Approach:
 - Aggregate MS method documents (and adjust the definition of "what is a useful method")
 - Extract chemistry (mostly CASRN and Names)
 - Map CASRN and Names to structures
 - Deliver a proof-of-concept application to search a database by names, CASRNs, InChIKeys and ultimately structure

Most people start with Google

 People have many places to search for methods, and there is no one integration hub, except for search engines

 Search engines can return so many hits – then you filter by analytes, matrix, analytical methodology, so many synonyms and abbreviations for so many chemicals

Synonyms, Abbreviations and Chemicals

Open Access | Published: 12 August 2015

Fast analysis of 29 polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs with ultra-high performance liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry

	0.5% aniso	le in toluer	ne (dopant A)
			Accuracy a
Compound	Linear Range (ng/mL)	R ²	10 ng/mL
ACPY	50–500	0.9978	98.8 ^a (7.6)
ACP	5–200	0.9998	98.0(3.6)
FLU	20–500	0.9954	103 ^b (2.5)
PHEN	2–500	0.997	101(6.0)
ANTHR	2–500	0.9976	101(5.1)
FL	2–200	0.9978	107(4.1)
PYR	2–200	0.9994	105(3.8)
BNT	2–500	0.9982	98.2(7.4)
CPP	2–500	0.9996	98.6(6.5)
ВАА	2–500	0.9996	99.9(7.6)
CHRY	2–500	0.9994	98.9(5.3)
DET	2 200	0.0074	040(54)

Food Control

Volume 62, April 2016, Pages 322-329

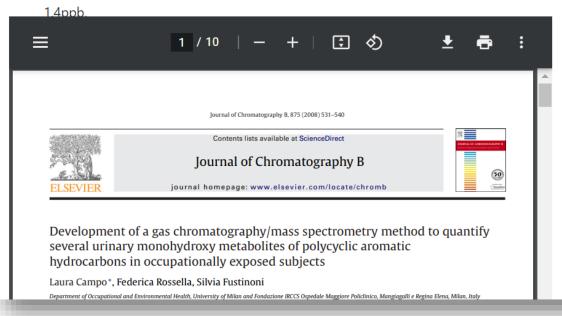
Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy

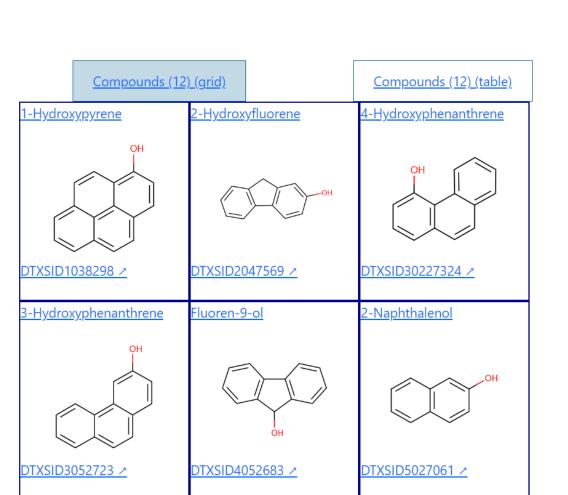
The certified standards of AFB1, AFB2, AFG1, AFG2, OTA, STG, ZEN, NIV, DON, 3-AcDON, 15-AcDON, DAS, NEO, T-2 and HT-2 toxin, FB1, FB2, FB3, BEA, ENNs (A, A1, B, B1), AOH, AME, and TEN were purchased from Sigma Aldrich (Madrid, Spain).

The individual stock solutions of AFB1, AFB2, AFG1, AFG2, OTA, STG, ENs (A, A1, B, B1), BEA, AOH, AME, and TEN at 500µg/mL were prepared in acetonitrile, whereas ZEN, FB1, FB2, FB3, NIV, DAS, NEO, DON, 3-AcDON, 15-AcDON, T-2 and HT-2 toxin were prepared at 1000µg/mL in methanol. A working mixed standard solution at 5 and

 CAS Numbers, Names and Abbreviations can limit what's possible...

Might this be a better view?



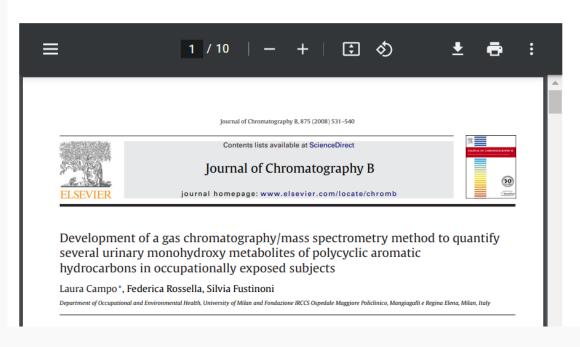

Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects

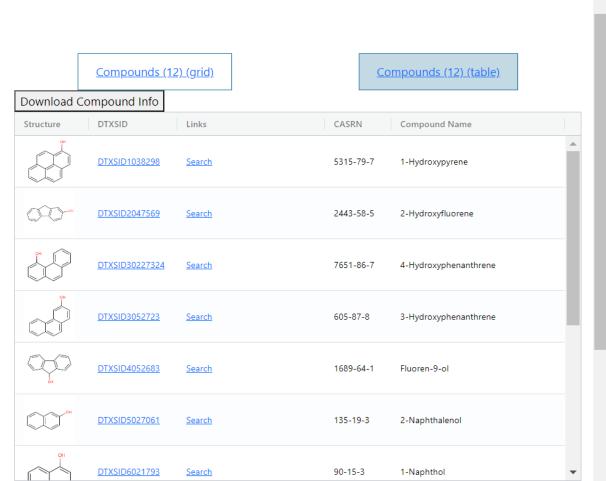
Author: Laura Campo, Federica Rossella, Silvia Fustinoni

Focus/Analyte: PAHs and their degradates

Synopsis: Determination of pAHs and their degradates in by GC/MS with a LOQ of 0.1-

Might this be a better view?




Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects

Author: Laura Campo, Federica Rossella, Silvia Fustinoni

Focus/Analyte: PAHs and their degradates

Synopsis: Determination of pAHs and their degradates in by GC/MS with a LOQ of 0.1-1.4ppb.

When methods are mapped to chemistry...

- The advantages of mapping chemicals directly to methods
 - When chemicals are mapped it opens access to many other tools
 - Chemical structures allow for QSAR modeling

Transparency in Modeling through Careful Application of OECD's QSAR/QSPR Principles via a Curated Water Solubility Data Set

Charles N. Lowe*, Nathaniel Charest*, Christian Ramsland, Daniel T. Chang, Todd M. Martin, and Antony J. Williams

♥ Cite this: Chem. Res. Toxicol. 2023, 36, 3, 465–478

Article Views

Altmetric

Citations

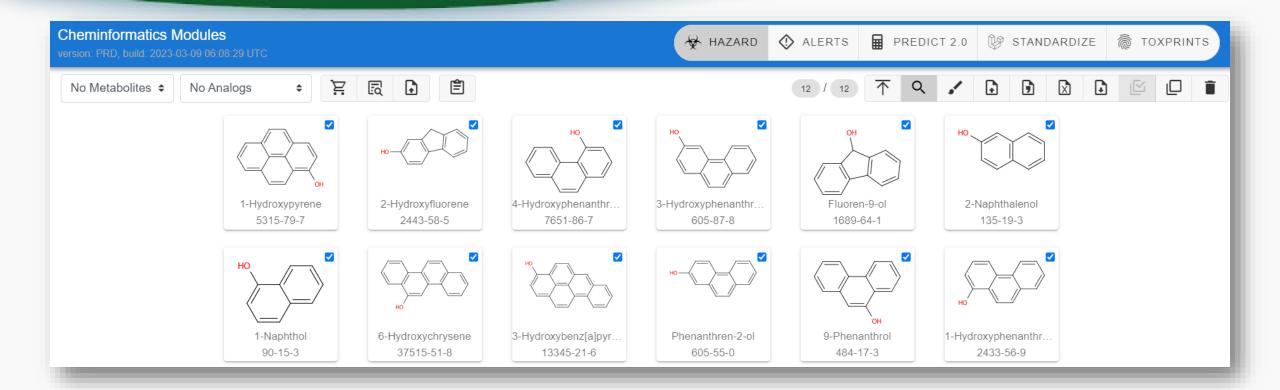
Share Add

Predicting compound amenability with liquid chromatography-mass spectrometry to improve nontargeted analysis

Charles N. Lowe ☑, Kristin K. Isaacs, Andrew McEachran, Christopher M. Grulke, Jon R. Sobus, Elin M. Ulrich, Ann Richard, Alex Chao, John Wambaugh & Antony J. Williams

Analytical and Bioanalytical Chemistry 413, 7495–7508 (2021) Cite this article

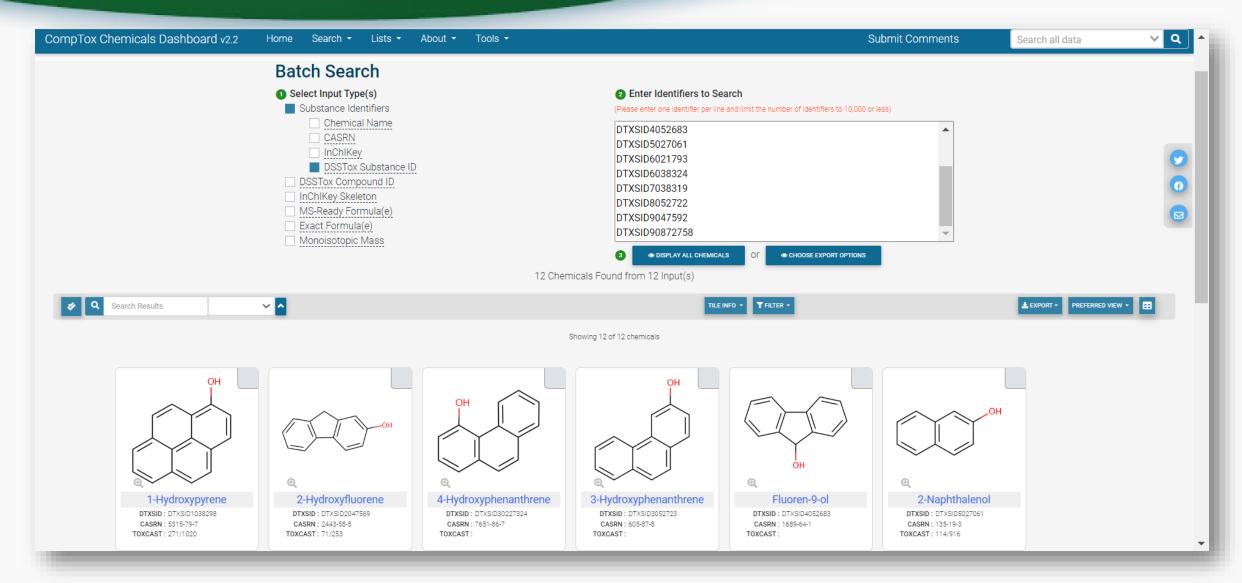
OPERA models for predicting physicochemical properties and environmental fate endpoints


Kamel Mansouri [™], Chris M. Grulke, Richard S. Judson & Antony J. Williams

Journal of Cheminformatics 10, Article number: 10 (2018) | Cite this article

17k Accesses | 221 Citations | 25 Altmetric | Metrics

...and what if we could then profile toxicity?


...and what if we could then profile toxicity?

rsion: PRD, build: 2023-03-0										^	IAZARD	ALERT		PREDI			ANDARD		TOXF	PRINTS
						ı	Human	Health	Effects							Ecoto	oxicity		Fate	
Skipped (0)	Acute M	lammaliar	Toxicity		nicit				Neuro	toxicity	Systemi	c Toxicity				>	ity			
Unlikely (0) Filters (0) Sorting (1) Structure CAS Name	Oral	Inhalation	Dermal	Carcinogenicity	Genotoxicity Mutagenicity	Endocrine Disruption	Reproductive	Developmental	Repeat Exposure	Single Exposure	Repeat Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Exposure
484-17-3 MMM 9-Phenanthrol	М			Н	Н	Н		Н					Н			VH			L	Н
135-19-3 GBTMM 2-Naphthalenol	М	М	L	T	L	Н	I	I	Н	Н	Н	Н	Н	L	Н	VH	VH	М	L	Н
90-15-3 HGBTM 1-Naphthol	M	1	M	1	I	Н	I	Н	1		Н	М	Н	н	VH	VH	L	М	L	M

...or simply harvest data from the CompTox Chemicals Dashboard

What data would you like???

Presence in Lists **Chemical Identifiers** Metadata ■ Description Title DTXSID Curation Level Details Chemical Name Safety Data ∇ ∇ NHANES/Predicted Exposure DTXCID 40 CFR 116.4 Designation of Hazardous Substa 40CFR1164 C nces (Above Ground Storage Tanks) 1 CAS-RN Data Sources 40CER355 Extremely Hazardous Substance List 40CFR355 3 InChlKey Include ToxVal Data Availability and Threshold Planning Quantities _ 1 **IUPAC Name** Assay Hit Count ACSREAG 🔀 LIST: ACS Reagent Chemicals . 1 Number of PubMed Articles AEGLVALUES C AEGLS: Acute Exposure Guideline Levels. 1 Structures PubChem Data Sources AGCHEMWEAPONS 🗹 WEAPONS: Australia Group. 1 Mol File CPDat Product Occurrence Count ALGALTOX C LIST: Algal Toxins _ 1 SMILES IRIS InChl String ALLSURFACTANTS C CATEGORY: Surfactants. _ 1 **PPRTV** MS-Ready SMILES AMINOACIDS 🗹 CATEGORY: Amino acids _ 10 Wikipedia Article **OSAR-Ready SMILES** QC Notes AMPHIBOLES C Amphibole minerals _ 1 Antimicrobial Ingredients in Building Materials Include links to ACToR reports Intrinsic and Predicted Properties ANITMICROB2 C Molecular Formula CATEGORYIPHARMACEUTICALS: Antibiotics _ **Enhanced Data Sheets** ANTIBIOTICS C Average Mass MetFrag Input File (Beta) CATEGORY/WIKILIST/ANTIMICROBIALS: Antimi ANTIMICROBIALS C Monoisotopic Mass crobials from Wikipedia 1 Abstract Sifter Input File List of Adverse Outcome Pathway Stressors _ **TEST Model Predictions** AOPSTRESSORS C Synonyms and Identifiers OPERA Model Predictions Related Substance relationships Rows: 424 ToxPrint fingerprints (ChemoTyper) Associated ToxCast Assays ToxPrint single fingerprints ToxVaIDB Details Physicochemical Property Values 11

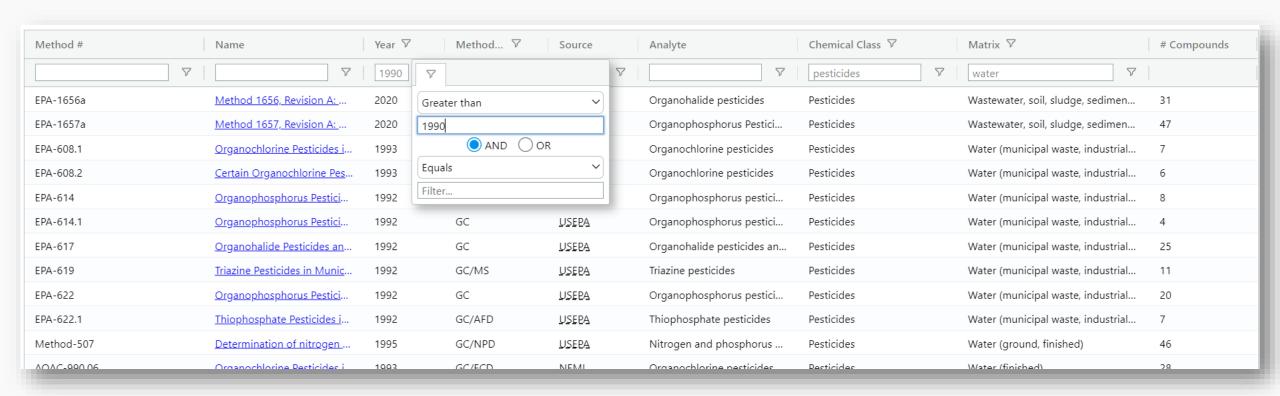
Introducing AMOS Analytical Methods and Spectra Database

- Three types of data in the database:
 - Methods (regulatory, lab manuals and SOPs, publications, tech notes)
 - Spectra (from public domain and our own laboratories)
 - Monographs (harvested from SWGDRUG and other sites)
- Some methods have associated spectra
- Some data are just externally linked
- Currently contains around 135,000 spectra, 600,000 external links, 650 monographs, and ~2000 methods
- ALL data are growing in number

Where are there methods?

- Agency-based methods
 - EPA
 - USGS
 - USDA
 - CDC
 - FDA
- Vendor application notes Thermo, Waters, Agilent, Sciex, Shimadzu, LECO,
- Peer-reviewed articles
- Laboratory Documents lab manuals, SOPs

A view of the methods list



Method #	Name	Year	Methodology	Source ↓ ≡	Analyte	Chemical Class	Matrix	# Compounds
∇	7		∇		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	∇	ν	
10.1155/2015/592763	Development and V	2015	GC/ECD	Hindawi	Metamitron		Soil	1
JAMC-8838219	Development and A	2020	LC/MS	Hindawi	Antituberculosis Dr		Serum (human)	4
PMC-AL-2074-2088	Quantitation of Phe	2021	LC/MS	HHS	Phenolic benzotriaz		Plasma (rat)	9
10.1016/j.foodcont.2023.109772	Determination of 63	2023	HPLC/MS	Food Control	Mycotoxins		Grain products	62
10.1016/j.foodchem.2016.05.151	<u>QuEChERS-based p</u>	2016	HPLC/MS	Food Chemi	Quaternary ammoni	Surfactant	Dairy products	7
C-010.02	Determination of 16	2021	LC/MS	FDA	PFAS		Processed food	16
C-011.01	Determination of Ch	2019	LC/MS	FDA	Chloramphenicol an		Cobia, croaker, and shrimp	2
T-PFAS-WI14355	Polyfluorinated alkyl	2018	LC/MS	Eurofins	PFAS		Aqueous samples	22
10.1186/s12302-021-00556-1	Method developme	2021	HPLC/MS	Environment	Microcystins	Cyanotoxin	Water (surface)	8
10.1039/C9EM00554D	Comprehensive scre	2020	LC/MS	Environment	Quaternary ammoni	Surfactant	Sediment, water (waste)	28
Method 545	Method 545: Deter	2015	LC/MS	EPA-OW	Anatoxin-a, Cylindro	Cyanotoxin	Water (finished)	2
GRM-91.10	2018-06-44045101	1995	Immunoassay	EPA-ECM	Spinosad		Water	15
GRM-94.21	2018-06-44045102	1995	Immunoassay	EPA-ECM	Spinosad		Sediment	15
GRM-94.20	2018-06-44045103	1995	HPLC/UV	EPA-ECM	Spinosad and its de		Soil/sediment	5
GRM-94.12	2018-06-44045105	1995	HPLC/UV	EPA-ECM	Spinosad and its de		Water	5
D9513	2018-06-44084504	1995	LC/MS	EPA-ECM	Quinclorac and its d		Soil (sand, sandy loam)	3
D9513	2018-06-44086601	1996	LC/MS	EPA-ECM	Quinclorac and its d		Soil (sand, sandy loam)	3
RAM-278/01	2018-06-44104807	1996	LC/MS	EPA-ECM	Tralkoxydim		Soil	3

Filtering the list for interests...

Look for pesticides studied in water, by GC/MS, after 1990

Where are there methods?

900 method documents from the EPA harvested

Related Topics: Pesticide Analytical Methods CONTACT US

Environmental Chemistry Methods (ECM) Index

$$\textbf{0-9} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{A} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{B} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{C} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{E} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{F} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{G} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{H} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{I} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{K} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{L} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{M} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{O} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{P} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{Q} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{S} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{I} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{V} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{Z} \hspace{0.1cm}$$

Analyte(s) by Pesticide	ECM MRID	Matrix	Method Date
<u>1,2,4-triazole</u>	49762553	Water	2/19/13
1,3-dichloropropene & 1,2-dichloropropane	44536511	Soil	3/27/98
1,3-dichloropropene & 1,2-dichloropropane	44536511	Water	3/27/98
1,3-dichloropropene Degradate 3-chloroallyl Alcohol	44536505	Water	12/12/97

Many Scanned Documents!!!

- Methods generally developed by the agrochemical companies
- Include parents plus degradation products
- Lots of scanned, old, documents but the historical records are still of significant use
- Electronic document forms of old documents still of benefit

GRM.: 94.13 EFFECTIVE: July 26, 1995

UPERSEDES: New

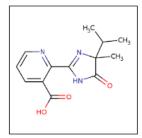
Determination of Residues of 1,2-Dichloropropane and cis- and trans-1,3-Dichloropropene in Soil by Purge and Trap Extraction, Capillary Gas Chromatography and Mass Selective Detection

S. C. Dolder, C. E. Kubitschek and H. E. Dixon-White North American Environmental Chemistry Laboratory DowElanco Indianapolis, Indiana 46268 - 1053

A. Scope

This method is applicable for the quantitative determination of residues of 1,2-dichloropropane (1,2-D) and cis- and trans-1,3-dichloropropene (1,3-D) in soil over the concentration range of 0.200-160,000 μ g/kg with a validated limit of quantitation of 0.200 μ g/kg for each compound.

CAS No. 78-87-5


cis-1,3-D CAS No. 10061-01-5

trans-1,3-D CAS No. 10061-02-6

Embedding the old Method PDFs

Search Results for "Imazapyr"

(Preferred) Name: Imazapyr DTXSID: DTXSID8034665

CASRN: 81334-34-1

InChIKey: CLQMBPJKHLGMQK-UHFFFAOYNA-N

Molecular Formula: C13H15N3O3

Mass: 261.281

Imazapyr

MRID: 41891501 Date: 10/1/89 Matrix: Water

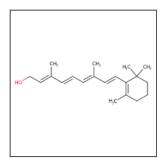
Registrant: American Cyanamide Co

Analysis: HPLC/UV

Limit of Quantitation: 5.0 µg/L

pectrum Type ↑	Source	Record Type	View	■ US EPA - ECM for Imazapyr 1 / 8 - 90% + 🕃 ♦)
	Environmental Chemistry Methods	Method	PDF	= US EPA - ECM for imazapyr 1 / 0 - 90% + E V)
	Environmental Chemistry Methods	Method	<u>PDF</u>	4/89/3
MS+	MoNA	Spectrum	<u>Spectrum</u>	478770
IS+	MassBank EU	Spectrum	<u>Spectrum</u>	
+	MassBank EU	Spectrum	<u>Spectrum</u>	C3197 CONFIDENTIAL Page 5 of 22
	MassBank EU	Spectrum	Spectrum	SOP M1900
1S+	MassBank EU	Spectrum	<u>Spectrum</u>	A. Khunachak/hm
5+	MassBank EU	Spectrum	<u>Spectrum</u>	09/05/89 Approved by:
				AMERICAN CYANAMID COMPANY AGRICULTURAL RESEARCH DIVISION CHEMICAL DEVELOPMENT P. O. Box 400 Princeton, New Jersey 08540 USA RECOMMENDED METHOD OF ANALYSIS
				Imazapyr (CL 243,997): HPLC Method for the Determination of CL 243,997 Residues in Water
				A. Principle
				Residues of CL 243,997 are extracted from water by using a C18 solid phase extraction (SPE) cartridge. Additional cleanup and specificity are achieved by

Embedding New Method PDFs



Search EPA.gov

	Environmental Topics	Laws & Regulations	About EPA				
Search Term Search				Home	Monograph List	About this App	Toggle Header/Footer

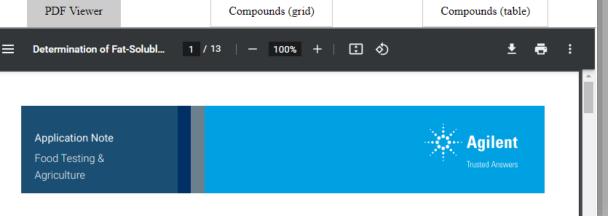
Search Results for "Retinol"

(Preferred) Name: Retinol DTXSID: DTXSID3023556

CASRN: 68-26-8

InChIKey: FPIPGXGPPPQFEQ-OVSJKPMPSA-N

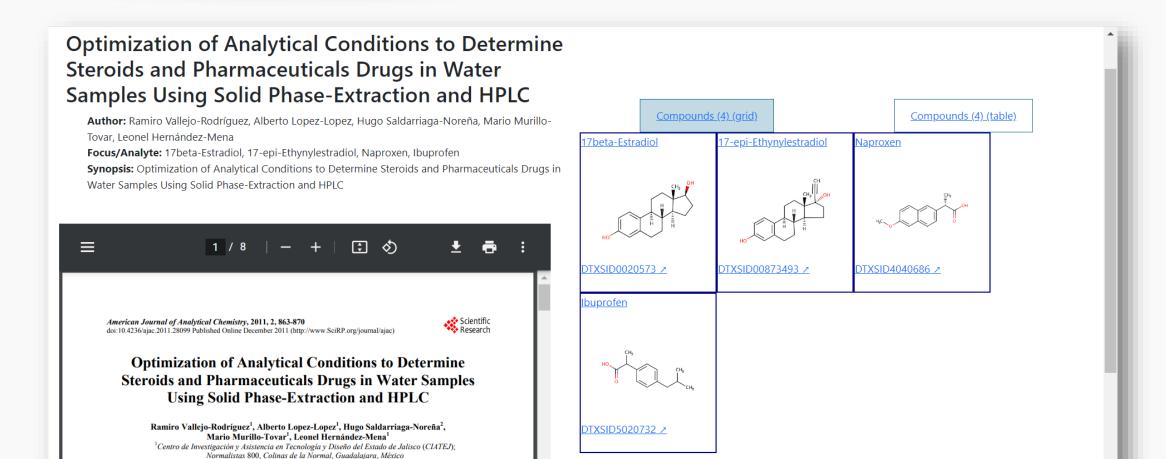
Molecular Formula: C20H30O


Mass: 286.459

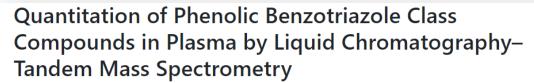
Determination of Fat-Soluble Vitamins in Foods Using Agilent Chem Elut S Extraction with LC/DAD and LC/MS/MS Triple-Quadrupole

Author: Hui Zhao

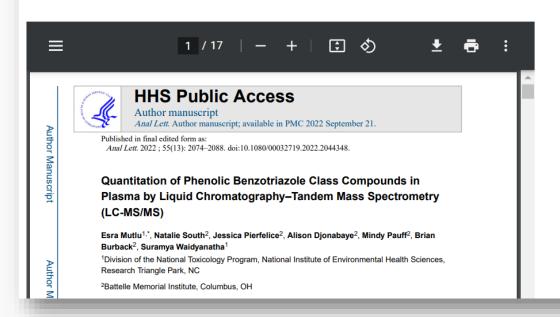
Focus/Analyte: Reliable sample preparation and identification/quantitation in various food matrices Synopsis: This application note describes a method for the determination of fat-soluble vitamins, including vitamin A (retinol), vitamin D3 (cholecalciferol), vitamin D2 (ergocalciferol), and vitamin E (α-tocopherol) in complex food matrices, including infant formula, egg, canned tuna, and mushroom. Samples were saponified as sample pretreatment, extracted using Agilent Chem Elut S (Supported Liquid Extraction (SLE)) 12 mL cartridges, and fat-soluble vitamins were then simultaneously identified and quantified by an Agilent 1290 Infinity II LC coupled to an Agilent diode array detector (DAD) and Agilent 6470 triple quadrupole LC/MS in series. Data were analyzed using Agilent MassHunter workstation software.

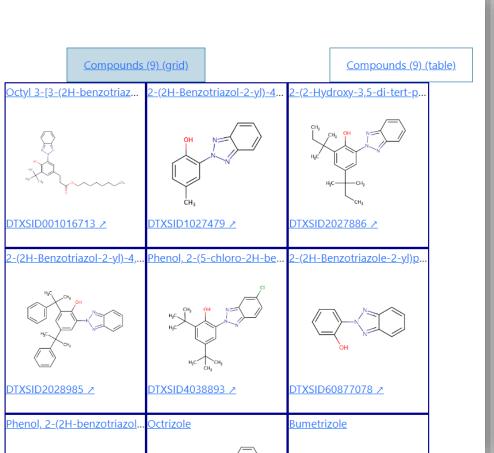

Spectrum Type $ \nabla \uparrow $	Source	Record Type	View	
GC-MS	<u>Spectrabase</u>	Spectrum	<u>External Link</u>	
GC-MS	<u>Spectrabase</u>	Spectrum	External Link	
GC-MS	<u>Spectrabase</u>	Spectrum	External Link	
GC-MS	<u>Spectrabase</u>	Spectrum	External Link	
GC-MS	<u>Spectrabase</u>	Spectrum	External Link	
GC-MS	<u>Spectrabase</u>	Spectrum	External Link	
GC-MS	<u>Spectrabase</u>	Spectrum	External Link	
GC-MS	<u>Spectrabase</u>	Spectrum	External Link	
LC-MS	<u>Agilent</u>	Method	PDF	
LC-MS+	<u>MoNA</u>	Spectrum	<u>Spectrum</u>	-

When Methods are OPEN Access


²Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, República Ote., Saltillo, México E-mail: alope=103@yahoo.com, allope=2@ciaet, net.mx Received August 22, 2011; revised October 4, 2011; accepted October 18, 2011

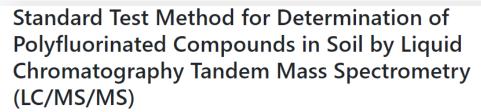
When Methods are PubMed OPEN Access

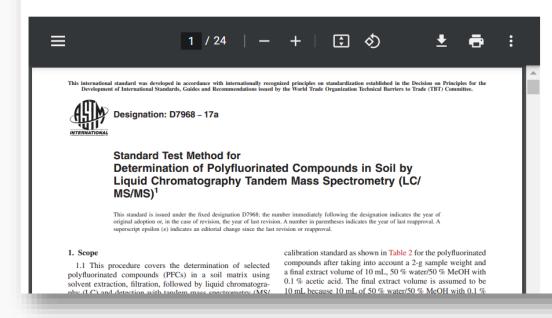


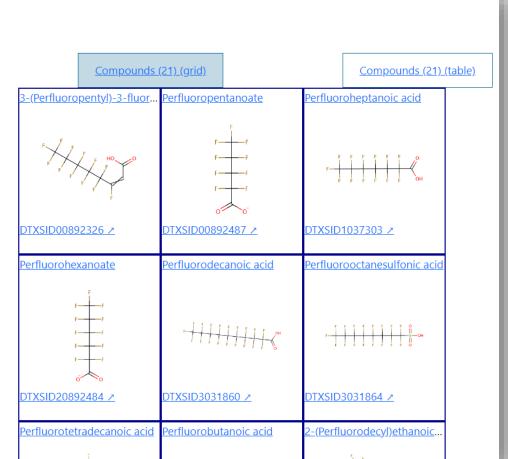


Author: Ersa Mutlu, Natalie South, Jessica Pierfelice, Alison Djonabaye, Mindy Pauff, Brian Burback, Suramya Waidyanatha

Focus/Analyte: Phenolic benzotriazole compounds


Synopsis: Determination of phenolic benzotriazole compounds in plasma (rat) by LC/MS with a LOQ of 5.0-10.0ppb.

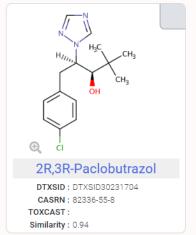

Proprietary Methods for INTERNAL Access



Author: ASTM International **Focus/Analyte:** PFAS

Synopsis: Determination of PFAS in soil (clay, sand, silt) by LC/MS.

If there is no method for your chemical


- Use "Chemical Similarity Searching" so that you can find chemicals that are similar in structure space
- Use the "Tanimoto Similarity Search

Searching for a chemical – CASRN, Name Direct structure searching coming

Compound Identifier | Diclobutrazol | Method Search

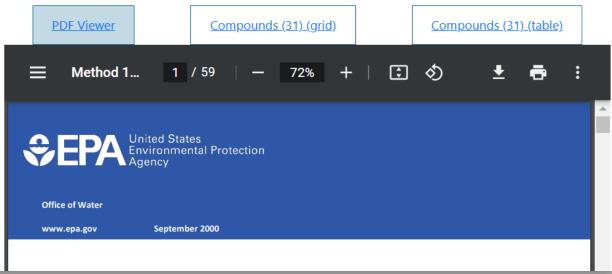
The table below lists methods for compounds that are similar to "DTXSID2058178".

Select a row in the table to view the method on the right half of the screen. Bolded rows refer to methods which contain the chemical being searched.

Hover over a method name to see the full text of it. The number in parentheses at the end is the number of similar compounds found in the method (not necessarily the number of compounds present in the method).

Columns can be hidden by clicking on the menu icon seen when hovering over a column name -- this brings up a menu where column visibility can be toggled.

Met	thod Name (# compounds)	Source	Methodology	Year	Sim	ıi	\downarrow	Similar l	DTXSID	Compou
>	Method 1656, Revision A: Organ	USEPA	GC/HSD	2020	>	0.	94			•
>	Methods of analysis-Determinat	USGS	GC/MS	2012	>	0.	85			
>	Analysis of Endocrine Disrupting				>	0.	85			
>	Determination of pesticides and	USGS	LC/MS	2015	>	0.	85			
>	A method for the analysis of 121				>	0.	85			
>	Analysis of Pesticides in Food Sa				>	0.	85			
>	2021-09-der-tebuconazole-soil-	EPA-ECM		2018	>	0.	85			
>	2021-09-der-tebuconazole-wate	EPA-ECM		2018	>	0.	85			
>	2021-09-ecm-tebuconazole-soil	EPA-ECM		2018	>	0.	85			
>	2021-09-ecm-tebuconazole-wat	EPA-ECM		2018	>	0.	85			
>	2021-09-ilv-tebuconazole-soil-n	EPA-ECM		2018	>	0.	85			


Method 1656, Revision A: Organo-Halide Pesticides in Wastewater, Soil, Sludge, Sediment, and Tissue by GC/HSD

Author: EPA-OW

Focus/Analyte: Organohalide pesticides

Synopsis: Determination of organohalide pesticides in wastewater, soil, sludge, sediment, and fish

tissue by GC/HSD with a MDL of 300-2000000ppb.

When Methods are Not Enough

- EPA is highly active in the field of non-targeted analysis
- We have been applying lots of cheminformatics approaches

"MS-Ready" structures for non-targeted highresolution mass spectrometry screening studies

Andrew D. McEachran [™], Kamel Mansouri, Chris Grulke, Emma L. Schymanski, Christoph Ruttkies & Antony J. Williams [™]

Journal of Cheminformatics 10, Article number: 45 (2018) | Cite this article

6215 Accesses | **45** Citations | **14** Altmetric | Metrics

Linking in silico MS/MS spectra with chemistry data to improve identification of unknowns

Andrew D. McEachran ☑, Ilya Balabin, Tommy Cathey, Thomas R. Transue, Hussein Al-Ghoul, Chris Grulke, Jon R. Sobus & Antony J. Williams ☑

Scientific Data 6, Article number: 141 (2019) Cite this article

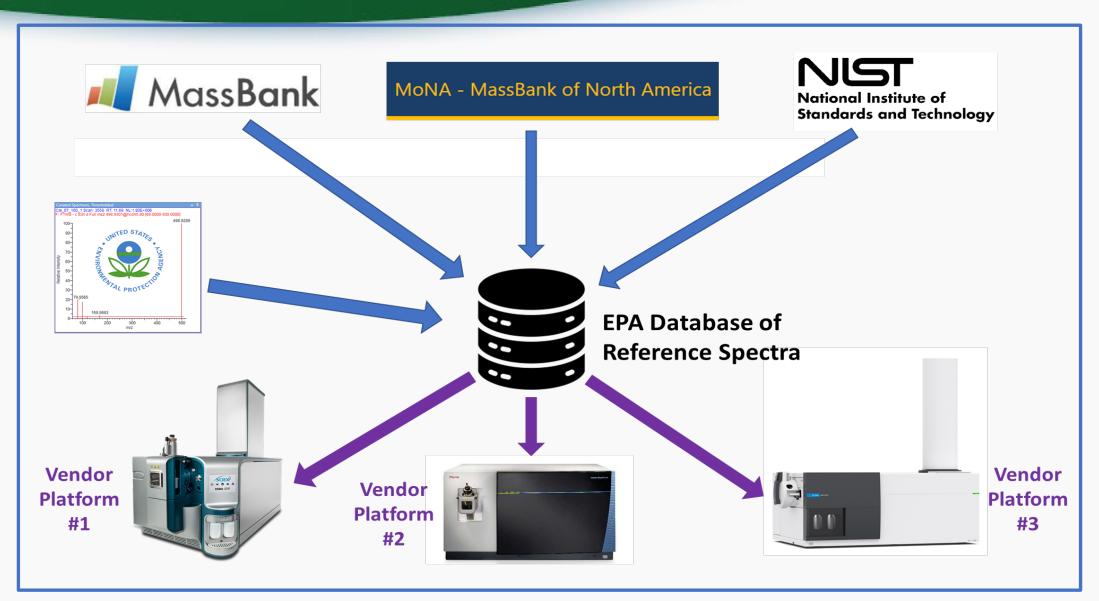
5422 Accesses 23 Citations 11 Altmetric Metrics

Article

Revisiting Five Years of CASMI Contests with EPA Identification Tools

Andrew D. McEachran ^{1,*}, Alex Chao ¹, Hussein Al-Ghoul ¹, Charles Lowe ², Christopher Grulke ², Jon R. Sobus ² and Antony J. Williams ^{2,*}

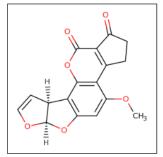
Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard


Andrew D. McEachran [™], Jon R. Sobus & Antony J. Williams [™]

Analytical and Bioanalytical Chemistry 409, 1729–1735 (2017) Cite this article

2748 Accesses | 76 Citations | 31 Altmetric | Metrics

Building a spectrum library to search against



Linking to actual spectra

33 Results for "aflatoxin B1"

(Preferred) Name: Aflatoxin B1

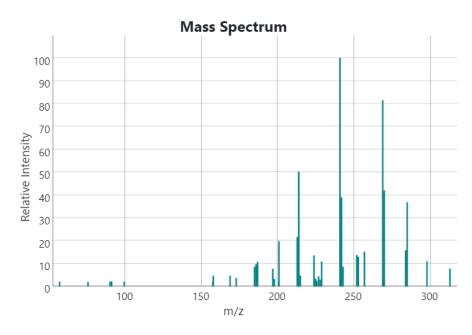
DTXSID: DTXSID9020035

CASRN: 1162-65-8

InChlKey: OQIQSTLJSLGHID-WNWIJWBNSA-N

Molecular Formula: C17H12O6

Mass: 312.0634

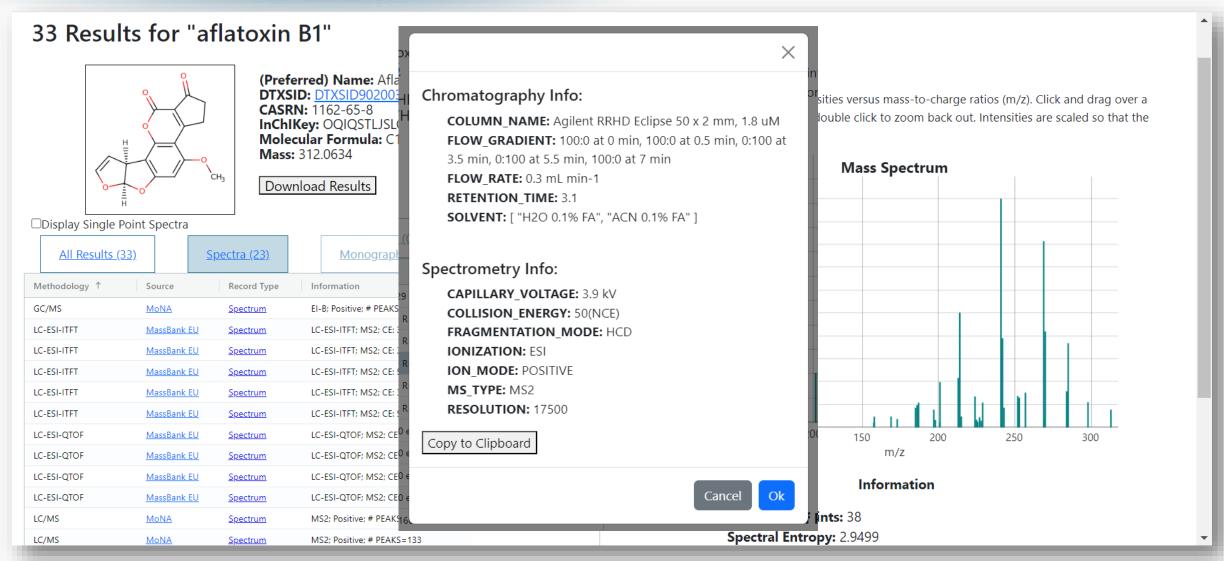

Download Results

Display Single Point Spectra

All Results (33)	<u>Spectra (23)</u>	Monographs (0)	Methods (10)

Methodology ↑	Source	Record Type	Information
GC/MS	<u>MoNA</u>	<u>Spectrum</u>	EI-B; Positive; # PEAKS=29
LC-ESI-ITFT	MassBank EU	<u>Spectrum</u>	LC-ESI-ITFT; MS2; CE: 30; R=17500; [M+F
LC-ESI-ITFT	MassBank EU	<u>Spectrum</u>	LC-ESI-ITFT; MS2; CE: 35; R=17500; [M+F
LC-ESI-ITFT	MassBank EU	<u>Spectrum</u>	LC-ESI-ITFT; MS2; CE: 50; R=17500; [M+F
LC-ESI-ITFT	MassBank EU	<u>Spectrum</u>	LC-ESI-ITFT; MS2; CE: 35; R=17500; [M+f
LC-ESI-ITFT	MassBank EU	<u>Spectrum</u>	LC-ESI-ITFT; MS2; CE: 50; R=17500; [M+f
LC-ESI-QTOF	MassBank EU	<u>Spectrum</u>	LC-ESI-QTOF; MS2; CE: 20 eV; R=35000;
LC-ESI-QTOF	MassBank EU	<u>Spectrum</u>	LC-ESI-QTOF; MS2; CE: 30 eV; R=35000;
LC-ESI-QTOF	MassBank EU	<u>Spectrum</u>	LC-ESI-QTOF; MS2; CE: 40 eV; R=35000;
LC-ESI-QTOF	MassBank EU	<u>Spectrum</u>	LC-ESI-QTOF; MS2; CE: 50 eV; R=35000;
LC/MS	<u>MoNA</u>	<u>Spectrum</u>	MS2; Positive; # PEAKS=160
LC/MS	MoNA	<u>Spectrum</u>	MS2; Positive; # PEAKS=133

Below is a plot of the spectrum as intensities versus mass-to-charge ratios (m/z). Click and drag over a section of the horizontal axis to zoom; double click to zoom back out. Intensities are scaled so that the highest peak has a value of 100.



Information

Number of Points: 38 Spectral Entropy: 2.9499

Linking to actual spectra

There are errors EVERYWHERE: 110-75-8

METHOD 601—PURGEABLE HALOCARBONS

1. Scope and Application

1.1 This method covers the determination of 29 purgeable halocarbons.

The following parameters may be determined by this method:

Parameter	STORET No.	CAS No.
Bromodichloromethane	32101	75-27-4
Bromoform	32104	75-25-2
Bromomethane	34413	74-83-9
Carbon tetrachloride	32102	56-23-5
Chlorobenzene	34301	108-90-7
Chloroethane	34311	75-00-3
2-Chloroethylvinyl ether	34576	100-75-8
Chloroform	32106	67-66-3
Chloromethane	34418	74-87-3
Dibromochloromethane	32105	124-48-1

23	_	U	J	U	L
1	INPUT	FOUND_BY	DTXSID	PREFERRE	D_NAME
2	75-27-4	CAS-RN	DTXSID102	Bromodichlo	romethane
3	75-25-2	CAS-RN	DTXSID102	Bromoform	
1	74-83-9	CAS-RN	DTXSID802	Methyl brom	ide
5	56-23-5	CAS-RN	DTXSID802	Carbon tetra	chloride
3	108-90-7	CAS-RN	DTXSID402	Chlorobenze	ne
7	75-00-3	CAS-RN	DTXSID102	Chloroethane	е
3	100-75-8	Checksum F	-	-	
)	67-66-3	CAS-RN	DTXSID102	Chloroform	
0	74-87-3	CAS-RN	DTXSID002	Chlorometha	ine
1	124-48-1	CAS-RN	DTXSID102	Chlorodibron	nomethane
2	95-50-1	CAS-RN	DTXSID602	1,2-Dichlorol	benzene
3	541-73-1	CAS-RN	DTXSID602	1,3-Dichlorol	benzene
•	100 10 7	242 511	DTVOID	4.5	

It can be challenging 9/365 chemicals...

Office of Water

EPA 821-R-16-007

www.epa.gov

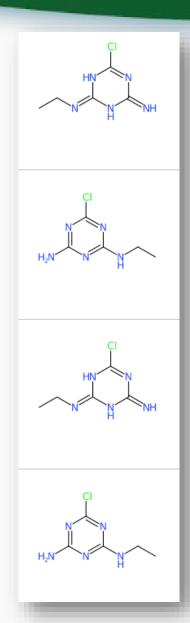
December 2016

Method 625.1: Base/Neutrals and Acids by GC/MS

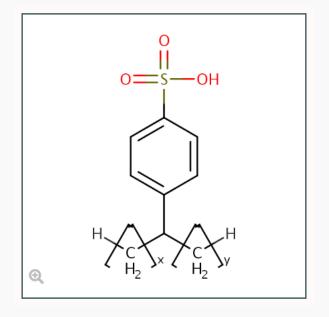
Butyrate	2008-41-3
n-C10 (n-decane)	124-18-5
n-C12 (n-undecane)	112-40-2
<i>n</i> -C14 (<i>n</i> -tetradecane)	629-59-4
<i>n</i> -C16 (<i>n</i> -hexadecane)	544-76-3
<i>n</i> -C18 (<i>n</i> -octadecane)	593-45-3
n-C20 (n-eicosane)	112-95-8
<i>n</i> -C22 (<i>n</i> -docosane)	629-97-0
<i>n</i> -C24 (<i>n</i> -tetracosane)	646-31-1
n-C26 (n-hexacosane)	630-01-3
n-C28 (n-octacosane)	630-02-4
n-C30 (n-triacontane)	638-68-6

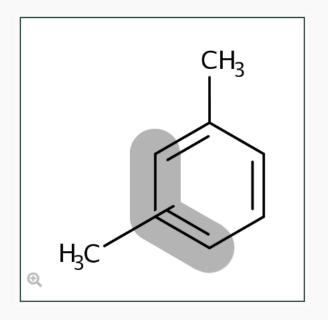
	CASRN	INPUT	FOUND_BY	DTXSID	PREFERRED_NAME		
100-75-5	100-75-5	100-75-5	CAS number fails checksum.				
108-39-2	108-39-2	108-39-2	CAS number fails checksum.				
11098-82-	11098-82-	11098-82-5	CAS number fails checksum.				
112-40-2	112-40-2	112-40-2	CAS number fails checksum.				
2310-18-0	2310-18-0	2310-18-0	CAS number fails checksum.				
291-29-4	291-29-4	291-29-4	CAS number fails checksum.	CAS number fails checksum.			
5218-45-2	5218-45-2	5218-45-2	CAS number fails checksum.				
58-89-8	58-89-8	58-89-8	CAS number fails checksum.				
65-50-0	65-50-0	65-50-0	CAS number fails checksum.				
6/1/2425	2425-06-1	2425-06-1	CASRN	DTXSID4020242	Captafol		
6/5/2497	2497-06-5	2497-06-5	CASRN	DTXSID8041901	Disulfoton sulfone		
7/6/2497	2497-07-6	2497-07-6	CASRN	DTXSID4037536	Oxydisulfoton		
100-01-6	100-01-6	100-01-6	CASRN	DTXSID8020961	4-Nitrobenzenamine		
100-02-7	100-02-7	100-02-7	CASRN	DTXSID0021834	4-Nitrophenol		
100-25-4	100-25-4	100-25-4	CASRN	DTXSID0021836	1,4-Dinitrobenzene		
100 42 F	100 42 F	100 42 F	CACDAL	DTVCID2024204	C+		

Atrazine-Desisopropyl 4 spectra	C5H8CIN5	HN NH	173.04683
Atrazine-desisopropyl 16 spectra	C5H8CIN5	H ₂ N H	173.04680
Atrazine-Desisopropyl 4 spectra	C5H8CIN5	HN NH	173.04683
Atrazine-desisopropyl 16 spectra	C5H8CIN5	H ₂ N H ₂ N	173.04680



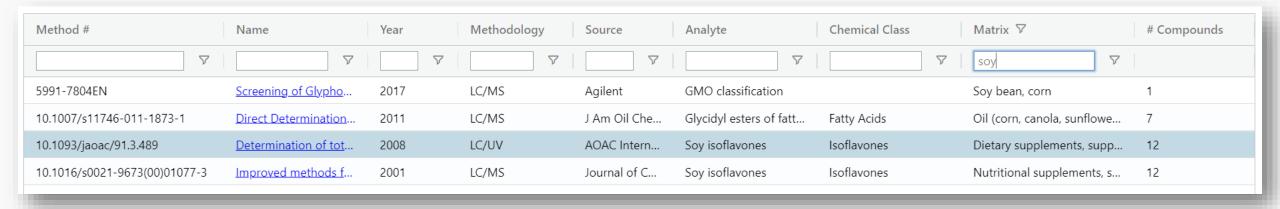
Atrazine-Desisopropyl 4 spectra	C5H8CIN5	HN NH	173.04683
Atrazine-desisopropyl 16 spectra	C5H8CIN5	H ₂ N H	173.04680
Atrazine-Desisopropyl 4 spectra	C5H8CIN5	HN NH	173.04683
Atrazine-desisopropyl 16 spectra	C5H8CIN5	H ₂ N H ₂ N	173.04680




Atrazine-Desisopropyl 4 spectra	C5H8CIN5	CI HN NH	173.04683
Atrazine-desisopropyl 16 spectra	C5H8CIN5	H ₂ N H	173.04680
Atrazine-Desisopropyl 4 spectra	C5H8CIN5	CI HN N N	173.04683
Atrazine-desisopropyl 16 spectra	C5H8CIN5	H,N N	173.04680

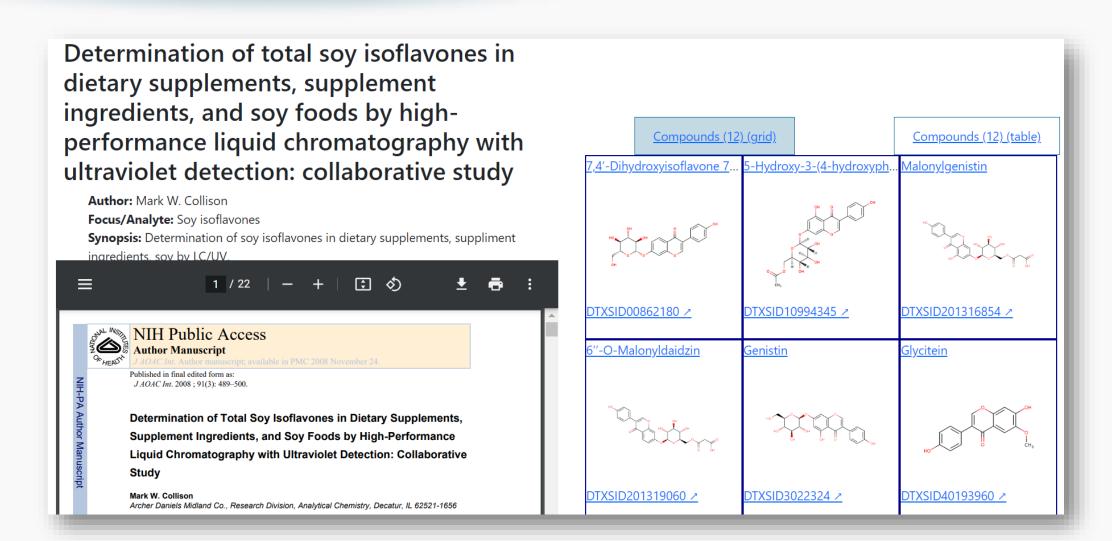
- Chemical structure representations would ideally be standardized...consider tautomeric forms
- Not all substances are explicit and can be ambiguous representations

My first time at AOCS...what did I learn?


- Some of your chemicals of interest: TAGs, PAHs, Toxins of different types
- Methods for PAHs, Aflatoxins and Microsystins, and triacyl glycerols all extracted and added to database

			Land III			s		
Method #	Name	Year	Methodology	Source	Analyte	Chemical Class	Matrix	# Compounds
∇	7		∇	riangleright	7	7 toxins	7	
CLG-TOX1.01	Identification of Poisons an	2013	GC/MS	USDA	Multiple Toxins	Toxins	Meat products	23
10.1016/j.foodcont.2023.109772	Determination of 63 mycot	2023	LC/MS	Food Control	Mycotoxins	Toxins	Grain products	62
10.3390/toxins14080513	LC-MS/MS Validation and				Cyanotoxins	Toxins		11
10.3390/toxins12040263	Development and Applicati					Toxins		6
10.1016/j.chroma.2009.03.035	Determination of aflatoxins	2009	LC/MS	Journal of C	Aflatoxins	Toxins	Food (nuts, cereals, dried fuits, spi	5
10.1016/j.foodchem.2021.129497	Development and validatio	2021	LC/MS	Food Chemi	Aflatoxins	Toxins	Fermented tea	4
10.1021/acsomega.1c01451	Validation of a Simple and	2021	LC/MS and LC/	ACS Omega	Aflatoxins	Toxins	Soil, food	4
10.1016/j.foodchem.2023.135593	One sample multi-point cal	2023	LC/MS	Food Chemi	Aflatoxins	Toxins	Milk, oat milk	6
10.1016/j.foodchem.2021.131962	Highly sensitive analysis of	2021	LC/MS	Food Chemi	Cyanogenic glycosides	Toxins	Oil (flaxseed)	4
10.3390/toxins9020059	Multi-Mycotoxin Analysis i	2017	LC/MS	Toxins	Mycotoxins	Toxins	Durum wheat pasta	17
	Simultaneous analysis of t	2015	LC/MS	Food Control	Mycotoxins	Toxins	Durem wheat grain	27

My first time at AOCS...what did I learn?



Index Mark Collison's methods ©

My first time at AOCS...what did I learn?

General Comments

- It is possible we can extract chemicals from AOCS methods and structure enable the method, WITHOUT making the method itself publicly accessible – like ASTM and ISO
- Our focus right now is on mass spectrometry methods but can support many other methods

Method #	Name	Year	Met ∇ ↑	Source	Analyte Chemical Class	Matrix	# Compounds
	ν	$\nabla \mid \square $	immu 7	ν ν	7	7	7
GRM-91.10	2018-06-44045101-spino	<u>s</u> 1995	Immunoassay	EPA-ECM	Spinosad	Water	15
GRM-94.21	2018-06-44045102-spino	<u>s</u> 1995	Immunoassay	EPA-ECM	Spinosad	Sediment	15
GRM-95.11	2018-06-44456106-triclop	<u>ру</u> 1997	Immunoassay	M23-A93	Triclopyr and trichloropyrid	Water	2
NN-1004-98	2018-06-45499601-metol	<u>la</u> 1999	Immunoassay	EPA-ECM	Metolachlor	Water	33
AMR-2396-92	2015-01-43117401-metho	<u>o</u> 1993	Immunoassay	EPA-ECM	Methomyl	Soil/sediment, and water	1
AMR-2438-92	2015-01-43601701-nicos	<u>ul</u> 1995	Immunoassay	EPA-ECM	Nicosulfuron	Soil, and Water	2
S-1030-00A	2015-01-45499611-s-met	<u>to</u> 2001	Immunoassay	M23-A93	S-metolachlor	Water	32
S-1030-00B	2015-01-45499612-r-met	<u>:ol</u> 2001	Immunoassay	EPA-ECM	R-metolachlor	Water	32
ECM-0033S1	2015-01-der-43117401-e	<u>c</u> 1995	Immunoassay	EPA-ECM	Methomyl	Soil	1
ECM-0033W1	<u>2015-01-der-43117401-e</u>	<u>c</u> 1995	Immunoassay	EPA-ECM	Methomyl	Water (surface)	1

Conclusions

- We have built (I think) the first chemical structure indexed database of "methods"
- Methods are not just "approved methods" but also standard operating procedures, application notes, lab manuals, regulatory methods etc.
- Integrating methods to experimental spectral data will serve our non-targeted analysis efforts

If you want to help...

 Send information regarding analytical methods and method articles to <u>williams.antony@epa.gov</u>

• If anyone is interested in a live demo I can do one in the break