

Integrating High Throughput Transcriptomics into a Tiered Framework to Prioritize Chemicals for Toxicity Testing

Jesse Rogers, PhD
ORISE Postdoctoral Fellow, Biomolecular and Computational Toxicology Division
rogers.jesse@epa.gov

Disclaimer

The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of US EPA.

Addressing Gaps in Chemical Toxicity Testing

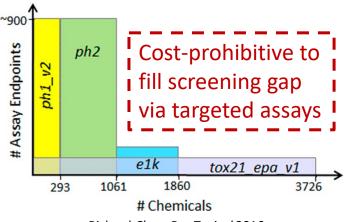
Toxicity Testing in the 21st Century (NRC 2007)

 Shift from traditional animal-based toxicity testing to New Approach Methodologies (NAMs) and predictive toxicology

Testing Phase	Chemical Set	Unique Chemicals	Assay Endpoints	
ToxCast Phase I	ph1_v1	310	~700	
ToxCast Phase II	ph1_v2	293	~200	
	ph2	768	~900	
	e1k	799	~50	
Tox21 tox21_epa_v1		3726	~80	

US EPA ToxCast program (Dix et al. Toxicol Sci 2007)

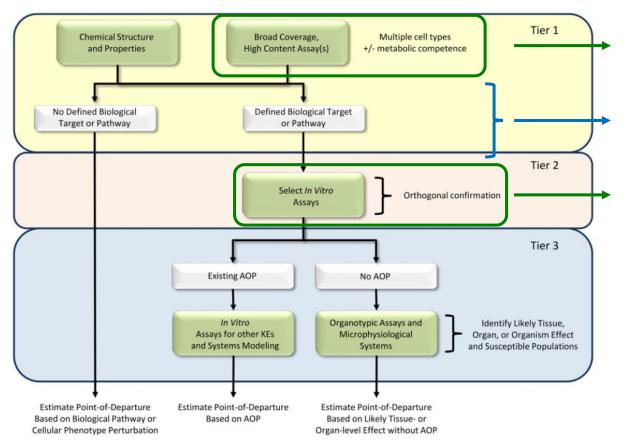
- Broad bioactivity profiling of chemicals via highthroughput screening (HTS) assays
- Limited biological target coverage, reduced xenobiotic metabolism in vitro (Rice et al. Environ Health Perspect 2013)



Next Generation Blueprint for Hazard Evaluation: Integrate multiple assay technologies into a single framework for efficient hazard screening (Thomas et al. Toxicol Sci 2019)

Integrating Data Streams to Improve Scientific Confidence in NAMs

<u>Tiered hazard evaluation framework</u>: investigate potential mechanisms-of-action (MoAs) via high-throughput screening platforms and link verified chemicals to likely adverse outcomes (Thomas et al. Toxicol Sci 2019)



High-Throughput Transcriptomics (HTTr)
High-Throughput Phenotypic Profiling (HTPP)

?

Targeted High-Throughput Screening Assays (ToxCast)

Computational Needs:

- Derive high-confidence MoAs from transcriptomic NAMs
- Develop criteria to prioritize chemicals for key hazards based on Tier 1-2 NAMs

Thomas Toxicol Sci 2019

Develop HTTr Signatures for MoA-Specific Activity

Define Tiered Framework for Chemical Prioritization

Project Outline

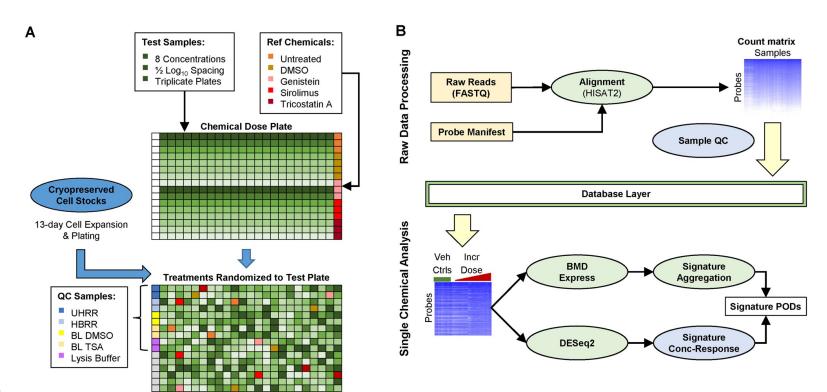
Apply Framework to Retrospective Tier 1-2 Screening Data

Identify Candidates for Prospective Tier 2 Assessment

Conclusions and Next Steps

High-Throughput Transcriptomics for Chemical Screening

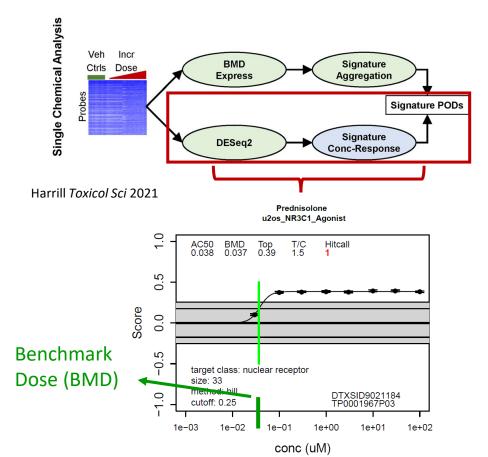
- TempO-Seq: Next-gen sequencing of >20,000 probes hybridized to expressed transcripts (Yeakley et al. PLos One 2017)
- Up to 1,387 chemicals screened in multi-concentration format for multiple cell lines:
 - MCF7 Breast Carcinoma Cells (Harrill et al. Toxicol Sci 2021)
 - U-2 OS Osteosarcoma Epithelial Cells (Bundy et al. In Prep)
 - HepaRG Hepatic Progenitor Cells (Shah et al. In Prep)



6

MoA Identification from Transcriptomic Data Streams

- Single-sample gene set enrichment analysis of compiled signatures
 (Barbie et al. Nature 2009)
- Concentration-response profiling of enrichment scores via *tcplfit2* (Sheffield *et. al. Bioinformatics* 2022)



Catalog of >11,000 public gene set signatures with toxicological relevance, annotated for known molecular targets:

- ➤ **Bioplanet** (Huang, et al. Front Pharmacol 2019)
- > CMap (Subramanian, et al. Cell 2017)
- > **DisGeNET** (Pinero, et al. Database 2015)
- ➤ MSigDB (Liberzon, et al. Cell Syst 2015)
- Some public signatures may not be well-suited for probing MoAs in current assay
 - Cell lines used for derivation
 - Methods used for development, e.g. KEGG/Reactome
- Data-driven signatures may improve assay translation by profiling gene expression related to molecular initiating events

Data-Driven Signature Development Identifies Uniquely-Potent Features

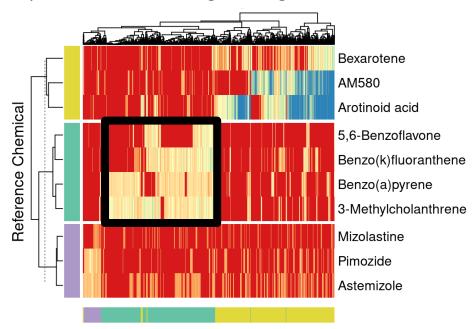
Reference Class Associated Signatures (RCAS): gene sets uniquely potent for individual MoAs identified via univariate strategy

• Reference chemicals identified via *RefChemDB*: automated mining of literature databases for chemical-molecular target interactions (Judson et. al. *ALTEX* 2019)

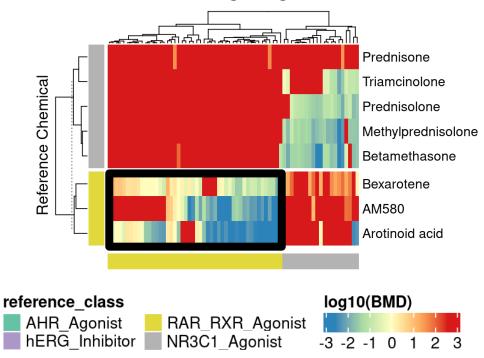
RCAS Gene Potencies Reveal Distinct Patterns by MoA

- Reference chemicals annotated for same MoA as signature demonstrate activity at low concentrations
- Reference chemicals annotated for other MoAs compared to signature show activity at high concentrations or no concentration-responsiveness

HepaRG Gene Clustering: 1173 genes identified



U-2 OS Gene Clustering: 69 genes identified

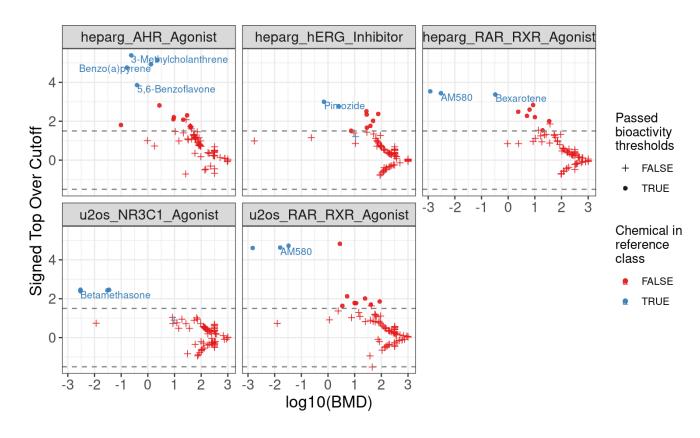


Efficacy and Potency for RCAS are Greatest for Matching Reference Chemicals

- Concentration-response modeling of reference signatures via CompTox-httrpathway package (https://github.com/USEPA/CompTox-httrpathway)
 - Enrichment scores estimated via ssGSEA (Barbie et. al. Nature 2009)
 - BMDs estimated from normalized enrichment scores via tcplfit2 (Sheffield et. al. Bioinformatics 2022)
- Signature bioactivity determined via thresholding of confidence and efficacy metrics:
 - Curve-fit confidence: hitcall ≥ 0.9
 - Efficacy: top over cutoff ≥ 1.5

In-class chemicals: low BMD, high efficacy

Out-of-class chemicals: high BMD, low efficacy

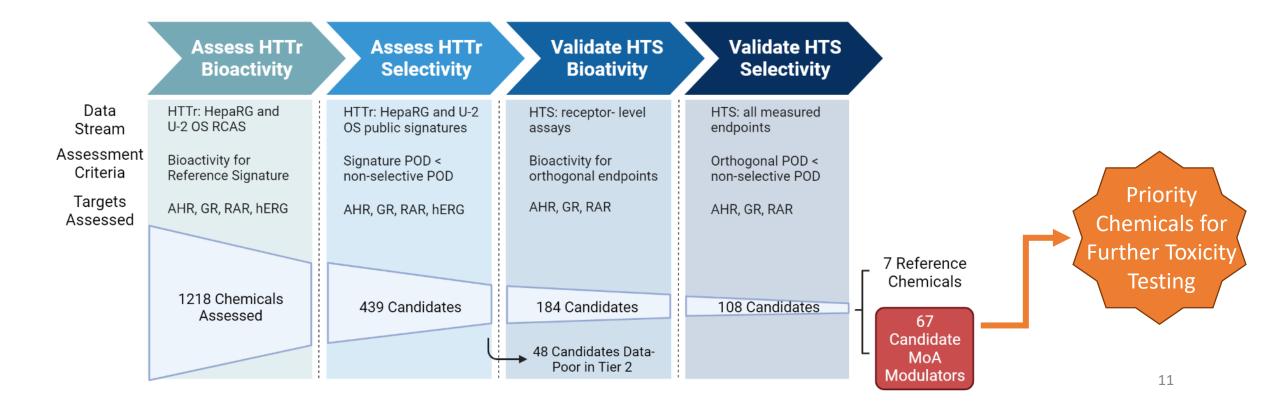


Chemicals annotated for each target passed threshold criteria for related signature, and few chemicals negative for each target passed criteria (except U2OS-NR3C1, in which none passed)

Integration of Transcriptomics into Chemical Prioritization Framework

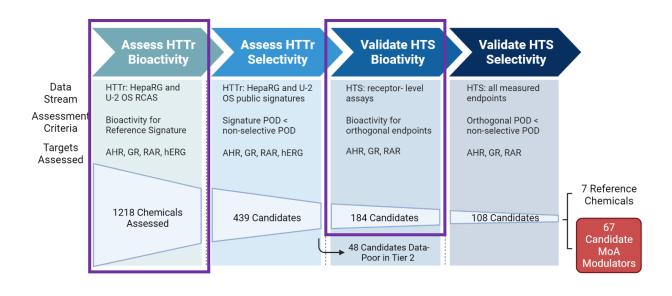
<u>Primary Assessment Aim</u>: identify chemicals with selective effects on molecular targets using transcriptional and receptor-level Points of Departure (PODs)

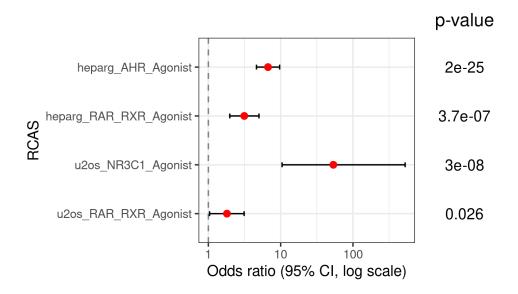
• Reference signature potencies compared to non-selective PODs estimated from distribution of >10,000 publicly-sourced signatures (Judson et. al. Tox Sci 2016)



Tier 1 Assessment Pre-Filters for Tier 2-Positive Chemicals

<u>Association between Individual Tier Outcomes</u>: Determine likelihood that Tier 1-bioactive chemicals are bioactive in at least one orthogonal Tier 2 assay



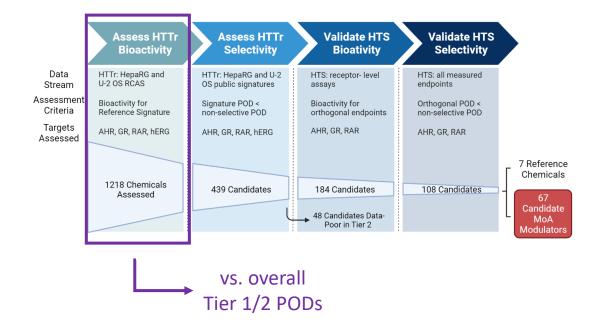


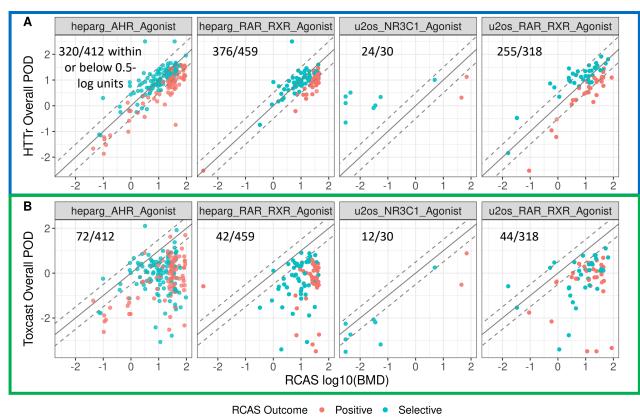
Chemicals positive for HTTr signatures were significantly more likely to show bioactivity in an orthogonal Tier 2 endpoint via Fisher's exact tests

Target-Specific Potencies Reflect Overall Transcriptomic PODs

<u>Comparison to Previous PODs</u>: Determine difference between Tier 1 potency estimates and overall PODs from Tier 1-2 Assays

- Tier 1: 5th percentile BMD from >10,000 publicly-sourced signatures
- Tier 2: 5th percentile ACC from all measured ToxCast endpoints

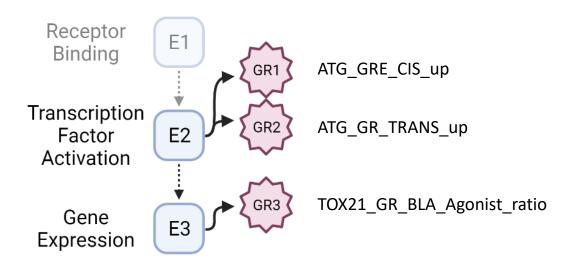


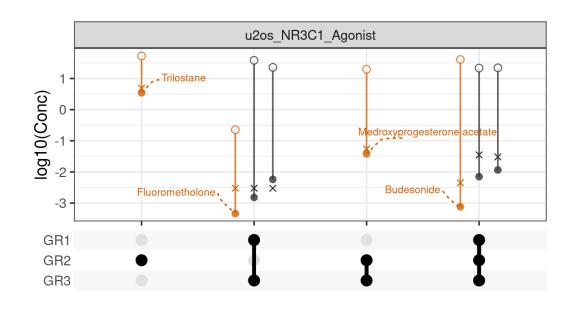


- 80±2% of Tier 1-bioactive chemicals demonstrate MoA-specific BMD within 0.5-log units of overall HTTr POD or below
- 20±14% of chemicals within 0.5-log units of overall ToxCast POD or below

Candidate NR3C1 Agonists Reflect Synthetic and Minor Glucocorticoids

Tier 2-Selective candidates demonstrate selective bioactivity in one or more orthogonal ToxCast endpoints:

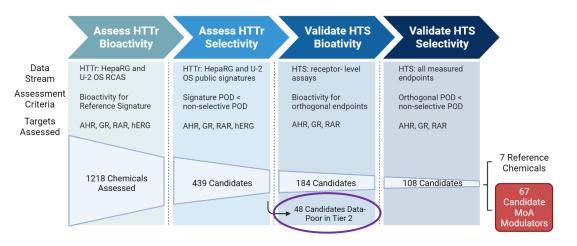




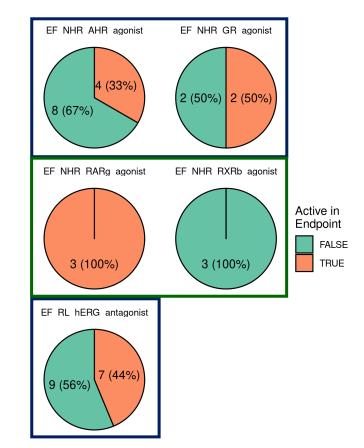
- <u>Fluorometholone</u>: active ingredient for treatment of eye inflammation
- <u>Medroxyprogesterone Acetate</u>: repression of interleukin secretion in normal human lymphocytes and amnion mesenchymal cells via minor GRE induction (Bamberger et al. J Clin Endocrinol Metab 1999, Marinello et al. Front Physiol 2020)

External Assessment of Data-Poor Chemicals Demonstrates Necessity of Multiple NAMs

Candidates with limited existing Tier 2 data profiled in orthogonal receptor-level assays:



Target	Vendor	Assay Type	No. Test Chemicals	Doses (uM)
AHR	Eurofins DiscoverX	Protein-Protein Interaction	12	0.3-30
GR	Eurofins DiscoverX	Protein-Protein Interaction	4	0.3-30
hERG	Eurofins Panlabs	Radioligand Binding	16	0.3-30
RARg	RARg Eurofins Panlabs Functional Coactivator		4	0.3-30
RXRb	Eurofins Panlabs	Functional Coactivator	4	0.3–30



AHR/GR/hERG Candidates:

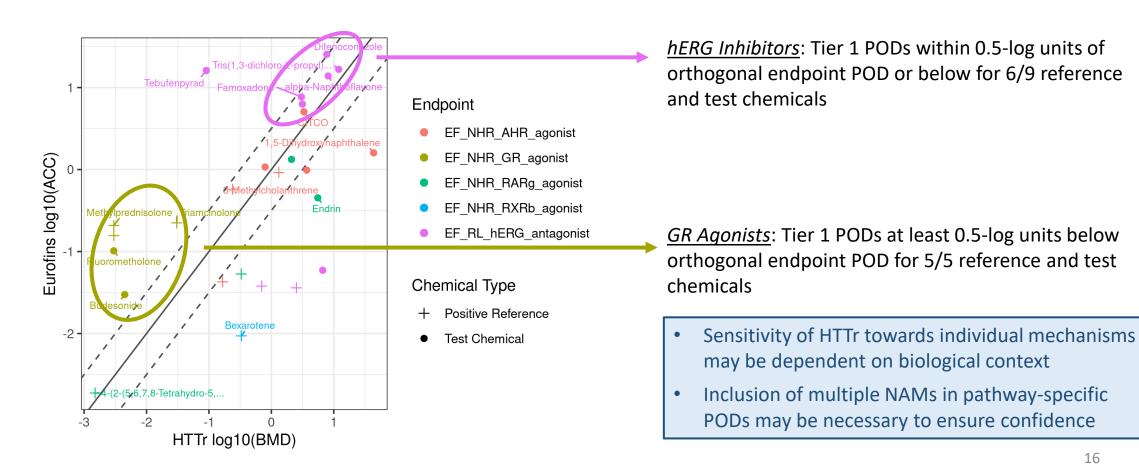
Tier 2 endpoints can further support priority chemicals and de-prioritize others

RAR/RXR Candidates:

Tier 2 endpoints distinguish between targets with similar transcriptomic profiles

External Assessment of Data-Poor Chemicals Demonstrates Necessity of Multiple NAMs

Estimated potency values from orthogonal endpoints compared to target-specific Tier 1 PODs:



Conclusions

 Univariate gene identification strategy paired with signature-level concentration response analysis allows for assessment of putative MoAs for transcriptomicbased toxicity testing

 Confirmation of transcriptional bioactivity via targeted Tier 2 assays identifies selectively-acting environmental chemicals and pharmaceuticals

 <u>Next Steps</u>: Inclusion of additional data streams to further support tiered testing (e.g. high throughput phenotypic profiling)

Acknowledgements

Project Mentors

- Katie Paul-Friedman
- Logan Everett

Management

- John Cowden
- Sid Hunter

BCTD/CTBB Team Members

- Joshua Harrill
- Richard Judson
- Imran Shah
- Joseph Bundy
- Derik Haggard
- Beena Vallanat
- Bryant Chambers
- Laura Taylor
- Sarah Davidson-Fitz

Shaping the Future of Science

Email: Rogers.jesse@epa.gov

Literature Mining Links Chemicals to Putative Targets

- RefChemDB: automated mining of multiple literature databases for chemical-molecular target interactions (Judson et. al. ALTEX 2019)
- Chemical assignment to molecular targets based on support, i.e. number of sources containing evidence of interaction
 - Hierarchical clustering of molecular target annotations based on Jaccard distance
 - Assignment of chemicals to clusters based on support of constituent molecular targets
- 13 clusters represent unique mechanisms-ofaction (MoAs) after cross-referencing with current high-throughput transcriptomics screening data

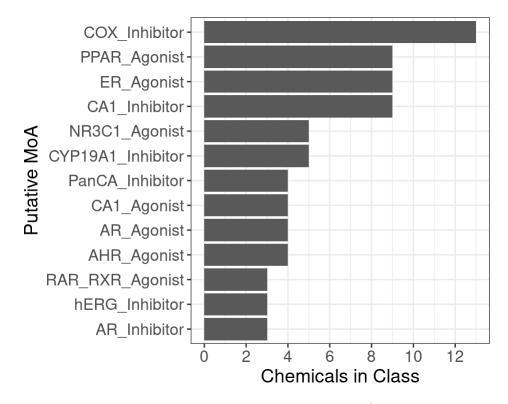
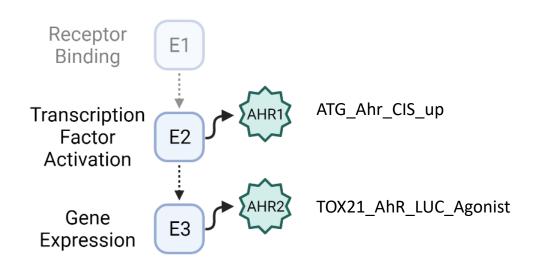


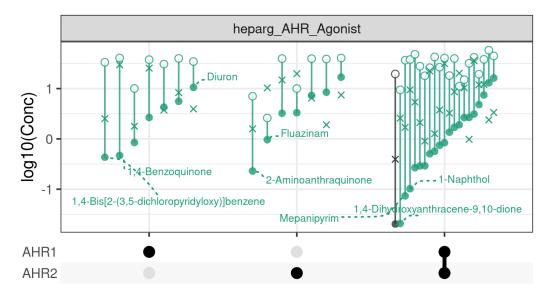
Figure indicates chemicals (selective and nonselective) associated with each signature (out of 1218 screened chemicals)

Candidate AHR Agonists Relate to Known Carcinogens

Tier 2-Selective candidates demonstrate selective bioactivity in one or more orthogonal ToxCast endpoints:



 <u>Anthraquinone Derivatives</u>: chronic oral exposure in Fisher rats increased rates of carcinogenesis, primarily in liver (Doi et al J Environ Health B 2006)



Candidate Retinoid Agonists Relate to ...

Target	Cell Type	Tier1+2-Selective Chemicals / Tier 1-Selective Chemicals
NR3C1	U-2 OS	8/8 (100%)
RAR/RXR	U-2 OS	12/35 (34.3%)
AHR	HepaRG	35/115 (30.4%)
RAR/RXR	HepaRG	24/52 (46.2%)

