SOT Hot Topic: Circulating Molecular and Cell-Derived Biomarkers for Translational Toxicology SOT Annual Meeting, Nashville, TN March 23, 2023

Extracellular microRNA as Biomarkers of Environmental Chemical Health Hazard Identification

Brian N. Chorley, PhD

Office of Research and Development

Center for Computational Toxicology and Exposure

Research Triangle Park, NC, USA

Disclaimer

This presentation does not necessarily reflect EPA policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Presentation outline

- 1. Scientific drivers for transcriptomic biomarkers
 - Regulatory drivers and our mission a)
 - Why microRNA? b)
- **Background studies** 2.
 - Biofluid-based indicators of liver disease in an PCB-exposed residential cohort a)
 - Urinary miRNA as biomarkers of regional nephrotoxicity b)
 - Dose-responsive microRNA biomarkers of chemical mode-of-action C)
- In vitro screening development using microRNA biomarkers 3.
 - Study design a)
 - b) Identification of microRNAs in media with sequencing
 - Chemical exposure study design and preliminary results C)
- 4. Conclusions/Future directions

Transcriptomic biomarkers in toxicology

- Many thousands of chemicals without data to provide a reference value
- Costly and time consuming to generate apical data
- Early transcriptional biomarkers may be sensitive measure of chemical perturbation and link to mechanism of adverse outcome of regulatory interest

- MicroRNAs are responsive to exogenous exposures
- Regulatory nodes for transcriptional networks
- MicroRNAs present in biofluids

MicroRNAs in Biofluids Non-invasive biomarkers?

Predictive and non-invasive

- Passive secretion of microRNA
 - Associated with cell death and toxicity
- Active secretion of microRNA

 Potentially vesicle-associated and involved in cell-to-cell signaling

Harrill et al. Toxicological Sciences 152(2):264-272, 2016

Are biofluid-based miRNA biomarkers informative for health effects due to environmental exposure?

Serum microRNA associated with liver disease

Hypothesis: Previously identified individuals with toxicant-associated fatty liver disease will exhibit an altered liver microRNA profile in serum.

Method: Use targeted panel to directly measure microRNA in archived serum and correlate with other liver toxicity and clin chem measures in cohort.

- Measured miRNA in biofluid correlated with specific liver injury biomarkers, but also indicated other adverse health processes
- Are they indicative of adverse mechanisms beyond general toxicity?
- Can we link miRNA alterations to specific exposure-mediated modeof-action?

Urinary miRNA as Biomarkers of Nephrotoxicity

Hypothesis: Urinary miRNAs are subregion-specific bioindicators of chemical-induced nephrotoxicity

Method: Measure miRNA in laser-dissected regions of rat nephron and correlate with released miRNA in urine o specific nephrotoxiciants dι

u	(Specific	nehm		lants															1et	
	-				. <i>₽</i> .		alimb				Site of Site injury	Comp	oounds	•	. 6.		alimb		ocator	rep of tose	o polettose
				Blomerulus O				JUS COMMAN TUBULE		the Heymann Nephritis		n Nephritis	ENUS CONTRATUDURE DUCT CONTRACT OF CONTRACT.				orteation dat mating address of the state of				
2 3		rno-mir 143-3r	18.34	9.17	6.27	9.75	nick Ascen	298.83	۹` 194.32	142.02	134.63	Doxo	53401.94	۹ ^۲ 28673.15	29779.12	22349.57	IR-223-3p	0.92	0.88	0.95	
	PT	rno-mir-192-5p	5.23	39.50	2.05	6.17	oximal Tu	12.44	174.48	14.11	24.29		4346.56	89910.60	7119.19	13259.77	p	1.00	0.99	1.00	
	RT.	rno-mir-140-5p	0.74	1.24	0.47	0.99		5.15	2.98	1.14	1.99		-	-	-	-	р *	0.19	-	-	
	TAL	rno-mir-221-3p	0.06	0.09	0.33	0.47		12.53	26.00	142.06	69.66	Nephroto	52.96	50.99	204.15	118.16	61	0.67	0.69	0.99	1
é S	TAL	rno-mir-210-3p	0.32	0.18	0.37	0.57		4.54	4.76	42.50	50.37		9.54	19.45	116.24	60.16	miR-210-3p miR-155-5p	0.84	0.41	0.81	
	GAL L	Ino-Hirf2250	0.10	0.16	0.23	0.63		2.08	3.91	1.15	7.72	Potassium	-	-	-	-	*	0.86	-	-	
b ü	G	rno-mir-223-3p	2.29	1.61	1.16	2.37		0.83	0.07	0.34	0.37	Cist	-	-	-	-	*	0.54	-	-	
o z	TAL	rno-mir-222-3p	0.29	0.40	0.91	0.99		3.75	4.05	20.20	17.43		-	-	-	-	*	0.97	-	-	
Resp neph		21	et	tPCR (targe	(target/miR-30d-5p)			Fireplex (MFi			Fi)	Gentamicin Sequencing (No Proprietary compound X			Normalized counts) 1 Correlation						
				12							limb of the loop of Henle	Proprietary compound Y									
		U								-	Collecting	NF	PAA		Urine measurements						
			K	\mathcal{U}							Ducts	Proprietary	compound Z	Z							
			ТА	L																11	

- Measured miRNA in biofluid correlated with specific liver injury biomarkers, but miRNAs can be released by active mechanisms of response and signaling.
- Are they indicative of adverse mechanisms beyond general toxicity?
- Can we link miRNA alterations to specific exposure-mediated modeof-action?

Dose Responsive miRNA Linked to Chemical Mode-of-Action

Hypothesis: Dose-responsive microRNAs correlates with gene expression and toxicology data in a PPARα mouse model of liver tumorigenesis

Method: Use microRNA profiling after short-term exposure of liver tumorigen

tumorigenic di(2-ethylhexyl) phthalate (DEHP)

non-tumorigenic

di-n-octyl phthalate (DNOP) n-butyl benzyl phthalate (BBP)

7 days (4 doses)

mmu-miR-378a-3p

Chorley et al. *Toxicol Rep*. 2020 Jun 23;7:805-815.

Project summary: miRNA linked to MoA

- In this case study, <u>dose-responsive</u> miRNA are linked to the known primary mechanism of action (PPARα) for DEHP-mediated mouse HCC
- Indications these miRNAs may be leaked/transferred into circulation

• Can these miRNA patterns enhance our chemical screening efforts?

Set EPA

Transcriptomic signatures in vitro to identify cellular stress response

Slide courtesy of Imran Shah, Bryant Chambers, US EPA

Defining extracellular microRNAs signatures

 Non-destructive measurement of extracellular microRNA to define chemical mechanism-of-action

- Identify candidate miRNA measured in HepaRG media
- Distinguish active versus passive release of miRNA into media (toxicity vs. cellular response)
- Link to gene expression networks and link cellular microRNA
- Establish extracellular microRNA patterns linked to chemical MoA

Aims

Set EPA

Defining microRNAs signatures of MoA

Phase I Chemicals

Benzo[a]pyrene – 10, 1, 0.25 uM	Aryl hydrocarbon receptor (AHR) agonist
Pirinixic acid (WY-14643) – 30, 3, 0.3 uM	Peroxisome proliferator-activated receptor (PPAR) α agonist
Menadione – 30, 15, 7.5 uM	Aldehyde oxidase-1 (AOX1) agonist
Ketoconazole – 10, 1, 0.1 uM	Cytochrome P450 3A4 (CYP3A4) antagonist
Retinoic acid – 10, 1, 0.1 uM	Retinoic acid receptor alpha (RAR-α) agonist
Chenodeoxycholic acid – 200, 100, 50 uM	Farnesoid X receptor (FXR) agonist
Trichostatin A – 3, 0.3, 0.03 uM	Histone deacetylase inhibitors (HDACi)
Rifampicin – 100, 50, 25 uM	Pregnane X receptor (PXR) agonist
Troglitazone – 100, 50, 5 uM	Peroxisome proliferator-activated receptor (PPAR) γ agonist
Atorvastatin – 10, 1, 0.1 uM	3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR) inhibitor

Small RNA sequencing: candidate miRNA identification

- 181 total miRNAs measured in media in small RNA-seq results
- 65 chosen for focused miRNA panel
- Candidates measured at 24h and 48h post exposure

FRA Targeted miRNA data Rotenone controls; "shockwave" toxicity indicator

Phase I Fireplex data "Porcupines"; Potential signatures of MoA 24h

EPA Can we replicate signatures? Adding more chemicals and doses

Omeprazole	Aryl hydrocarbon receptor (AHR) agonist	30, 10, 3, 1, 0.3, 0.1, 0.03 uM	
3,3'-diindolylmethane	Aryl hydrocarbon receptor (AHR) agonist	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Isovanillin	Aldehyde oxidase-1 (AOX1) agonist	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Hydralazine	Aldehyde oxidase-1 (AOX1) agonist	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Amiodarone	Cytochrome P450 3A4 (CYP3A4) antagonist	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Itraconazole	Cytochrome P450 3A4 (CYP3A4) antagonist	30, 10, 3, 1, 0.3, 0.1, 0.03 uM	
GW4064	Farnesoid X receptor (FXR) agonist	10, 3, 1, 0.3, 0.1, 0.03, 0.01 uM	
Obeticholic acid	Farnesoid X receptor (FXR) agonist	30, 10, 3, 1, 0.3, 0.1, 0.03 uM	
Suberohydroxamic acid	Histone deacetylase inhibitors (HDACi)	30, 10, 3, 1, 0.3, 0.1, 0.03 uM	Chemical
Vorinostat	Histone deacetylase inhibitors (HDACi)	30, 10, 3, 1, 0.3, 0.1, 0.03 uM	
Lovastatin	3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR) inhibitor	10, 3, 1, 0.3, 0.1, 0.03, 0.01 uM	
Simvastatin	3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR) inhibitor	10, 3, 1, 0.3, 0.1, 0.03, 0.01 uM	action
Acetaminophen	Peroxisome proliferator-activated receptor (PPAR) α agonist	100, 30, 10, 3, 1, 0.3, 0.1 uM	
MEHP	Peroxisome proliferator-activated receptor (PPAR) α agonist	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Rosiglitazone	Peroxisome proliferator-activated receptor (PPAR) γ agonist	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Pioglitazone	Peroxisome proliferator-activated receptor (PPAR) γ agonist	100, 30, 10, 3, 1, 0.3, 0.1 uM	
AM580	Retinoic acid receptor alpha (RAR-α) agonist	10, 3, 1, 0.3, 0.1, 0.03, 0.01 uM	
Arotinoid acid	Retinoic acid receptor alpha (RAR-α) agonist	10, 3, 1, 0.3, 0.1, 0.03, 0.01 uM	
Tunicamycin	Unfolded protein response (UPR)	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Brefeldin A	Unfolded protein response (UPR)	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Pyridaben	Unfolded protein response (UPR)/Hypoxia (HPX) response	30, 10, 3, 1, 0.3, 0.1, 0.03 uM	
1,10-Phenanthroline	Hypoxia (HPX) response	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Quercetin	Hypoxia (HPX) response	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Chlorothalonil	Heat shock response (HSR)	100, 30, 10, 3, 1, 0.3, 0.1 uM	Cellular stress
Cadmium Chloride	Heat shock response (HSR)	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Piperine	Oxidative stress response (OSR)	100, 30, 10, 3, 1, 0.3, 0.1 uM	response
Tert-butylhydroquinone	e Oxidative stress response (OSR)	100, 30, 10, 3, 1, 0.3, 0.1 uM	
	Oxidative stress response (OSR)		
1,4-Naphthoquinone	/Hypoxia (HPX) response	100, 30, 10, 3, 1, 0.3, 0.1 uM	
Etoposide	DNA damage response (DDR)	30, 10, 3, 1, 0.3, 0.1, 0.03 uM	
5-Fluorouracil	DNA damage response (DDR)	100, 30, 10, 3, 1, 0.3, 0.1 uM	

21

EPA Intracellular gene expression indicated chemical group MoA

22

Extracellular miRNA measures: over/under baseline

* € Р А*

Extracellular miRNAs above threshold: Statins (HMGCR inhibitors)

Summary: HepaRG media study

- Established extracellular microRNA patterns linked to chemical mechanismof-action
 - Cellular toxicity due to chemical exposure is correlating highly with the "shockwave" toxicity pattern
 - However, some signatures seen with non-toxic doses. Does this link to a specific MoA? Does it link with more apical cellular effect?
- Will link to gene expression networks and cellular microRNA alterations
 - Message and small RNA sequencing are being performed for cell lysates
 - We will leverage this data and in silico prediction algorithms to identify correlations between miRNAs and gene expression regulation (node identification)
- Distinguish active versus passive release of miRNA into media (cellular response vs toxicity)

Conclusions

- Overall, the evidence in these studies suggest microRNAs may serve as useful biomarkers for chemical screening and hazard identification in multiple toxicological contexts
- In human populations, miRNAs in blood correlated with disease markers and exposure
- In short-term mouse studies of exposure, miRNAs linked to primary mechanism-ofaction dose-dependently responded
- *In vitro*, non-destructive measurements of miRNA in media are indicative of mechanism-of-action
- Future studies will strengthen mechanistic relationship of miRNA alteration and cellular response

Acknowledgements

Gleta Carswell Gail Nelson Nyssa Tucker

Abcam

US EPA

Jessica Tytell (now at Boston University) Mike Tackett

University of Louisville

Matt Cave Christina Pinkston Shesh Rai Kimberly Head CDC/ATSDR

Marian Pavuk NIEHS

> Douglas Bell Linda Birnbaum

US EPA CCTE, BCTD Gail Nelson Gleta Carswell Charles Wood (now at Boehringer Ingelheim) CPHEA

Hongzu Ren (retired) Beena Vallanat Anna Fisher

NSF International Virunya S. Bhat

Short-term in vivo biomarkers study

Gail Nelson

Nyssa Tucker

Josh Harrill

Pathfinder Innovation Projects
Pathfinder Innovation Projects challenge EPA sci
answer the question, "Wouldn't it be amazing if

abcam

NSF

Bryanna Vacca (UNC rotation)

Abcam

US EPA

MoA

and

miRNA

Extracellular

Mike Tackett

HESI Emerging Systems Toxicology for the Assessment of Risk (eSTAR)

<u>Leadership</u>

biomarkers of Nephrotoxicity

miRNA

Jean-Charles Gautier (Sanofi; retired) Ernie Harpur (Newcastle University) HESI Staff: Connie Chen

Participant Affiliations

Abcam Astellas Bayer **Bristol-Myers Squibb US Environmental Protection** Agency Harvard University Janssen National Institute of Environmental **Health Sciences** Newcastle University Pfizer Sanofi University of North Carolina

Thank you and any questions?

Brian Chorley chorley.brian@epa.gov

