

# **Comparing RNA-seq and TempO-seq mRNA data sets: a case study**

Dr. Laura Word-Taylor U.S. Environmental Protection Agency Post-Doc Advisor: Dr. Richard Judson SOT March 20<sup>th</sup>, 2023 The views expressed are those of the authors and do not necessarily represent the views or the policies of the U.S. EPA



# Brief overview of mRNA sequencing





# Transcriptomics quantifies messenger RNA

- The human genome contains approximately **20,000 genes**
- Measuring changes in gene expression can help elucidate chemical mechanisms of action in cells
- There are **different technologies** for mRNA sequencing, including:
  - RNA-seq
  - TempO-seq



#### Figure 1: An overview of the flow of information from DNA to protein in a eukaryote

First, both coding and noncoding regions of DNA are transcribed into mRNA. Some regions are removed (introns) during initial mRNA processing. The remaining exons are then spliced together, and the spliced mRNA molecule (red) is prepared for export out of the nucleus through addition of an endcap (sphere) and a polyA tail. Once in the cytoplasm, the mRNA can be used to construct a protein.

#### © 2010 Nature Education

Kuang, Jujiao, et al. "An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research." *PloS one* 13.5 (2018): e0196438.

# Differences in the Technologies

#### RNA-seq:

- Gold-standard, established method
- Non-targeted sequencing of RNA, so all RNA is quantified and species type does not have to be known
- Requires purification of mRNA before quantification and is more expensive and time-intensive

#### TempO-seq:

- Easier sample prep because lysed cells can be used
- Less sample material is needed (picograms instead of nanograms)
- Can be less expensive per sample when done in bulk
- No specialized equipment is necessary (regular PCR)
- Can attenuate highly expressed genes, meaning less read-depth is needed
- Must have probes for the species, only quantifies RNA for which there
  is a tag to measure it

# OBJECTIVE

0

# Need to Compare the Two Technologies

TempO-seq is a new method that needs to be validated against the established RNA-seq method

### **Previous Research**

Study using rat liver samples showed TempOseq and RNA-seq showed platform differences but the mechanism of action (MOA) grouped by chemical treatment instead of by platform

# Work comparing human samples and more types of cells is still needed

> Front Genet. 2018 Oct 30;9:485. doi: 10.3389/fgene.2018.00485. eCollection 2018.

#### A Comparison of the TempO-Seq S1500+ Platform to RNA-Seq and Microarray Using Rat Liver Mode of Action Samples

#### Pierre R Bushel <sup>1</sup>, Richard S Paules <sup>2</sup>, Scott S Auerbach <sup>2</sup>

Affiliations + expand PMID: 30420870 PMCID: PMC6217592 DOI: 10.3389/fgene.2018.00485 Free PMC article

#### Abstract

The TempO-Seq<sup>TM</sup> platform allows for targeted transcriptomic analysis and is currently used by many groups to perform high-throughput gene expression analysis. Herein we performed a comparison of gene expression characteristics measured using 45 purified RNA samples from the livers of rats exposed to chemicals that fall into one of five modes of action (MOAs). These samples have been previously evaluated using Affymetrix<sup>TM</sup> rat genome 230 2.0 microarrays and Illumina<sup>®</sup> whole transcriptome RNA-Seq. Comparison of these data with TempO-Seq analysis using the rat S1500+ beta gene set identified clear differences in the platforms related to signal to noise, root mean squared error, and/or sources of variability. Microarray and TempO-Seq captured the most variability in terms of MOA and chemical treatment whereas RNA-Seq had higher noise and larger differences between samples within a MOA. However, analysis of the data by hierarchical clustering, gene subnetwork connectivity and biological process representation of MOA-varying genes revealed that the samples clearly grouped by treatment as opposed to gene expression platform. Overall these findings demonstrate that the results from the TempO-Seq platform are consistent with findings on other more established approaches for measuring the genome-wide transcriptome.

**Keywords:** RNA-Seq; S1500+; TempO-Seq; chemicals; microarray; mode of action; toxicants; toxicogenomics.

# Case Study for Comparing TempO-seq and RNA-seq Data

### Baseline Expression Data Sets for the Case Study

EPA Internal data [TempO-seq]

Cell Atlas and Tox21 CPP2

External data [RNA-seq] Human Protein Atlas (HPA)

| TempO-seq C | ell Types |
|-------------|-----------|
|-------------|-----------|

| Cell atlas   | Tox21 cpp2  |
|--------------|-------------|
| A549         | BT-483      |
| A-704        | C3A         |
| ARPE-19      | Cal-148     |
| ASC52telo    | Cal-78      |
| BHY          | CCD-18Co    |
| BJ-5ta       | Daudi       |
| CCD-18Co     | Detroit-551 |
| CHON-001     | DoHH2       |
| Daudi        | EFM-19      |
| DMS-454      | HepG2       |
| DV-90        | hNP1        |
| HBEC3-KT     | HOS         |
| HepaRG_2D    | Hs.839.T    |
| HepaRG_3D    | Hs-5        |
| HepG2        | Huh-1       |
| HME-1        | Huh-7       |
| HPNE         | MCF-7       |
| HSAEC-1      | MG-63       |
| HTB-9        | MHH-CALL-4  |
| HUVEC        | NCI-H1092   |
| Ker-CT       | NCI-H1105   |
| KP-N-RT-BM-1 | NCI-H1436   |
| MCF-7        | NCI-H2106   |
| NCI-H1092    | NCI-H2171   |
| RPE-1        | PLC/PRF/5   |
| RPTEC        | Saos-2      |
| SET-2        | SU-DHL-6    |
| SK-MEL-28    | T47-D       |
| TeloHAEC     | U-2 OS      |
| TIME         |             |
| U-2 OS       |             |

#### **RNA-seq Cell Types**

| Human Protein Atlas (HPA)       | HPA Cont.   |
|---------------------------------|-------------|
| A-431                           | JURKAT      |
| A549                            | K-562       |
| AF22                            | Karpas-707  |
| AN3-CA                          | LHCN-M2     |
| ASC diff                        | MCF7        |
| ASC TERT1                       | MOLT-4      |
| BEWO                            | NB-4        |
| BJ                              | NTERA-2     |
| BJ hTERT+                       | OE19        |
| BJ hTERT+ SV40 Large T+         | PC-3        |
| BJ hTERT+ SV40 Large T+ RasG12V | REH         |
| CACO-2                          | RH-30       |
| CAPAN-2                         | RPMI-8226   |
| Daudi                           | RPTEC TERT1 |
| EFO-21                          | RT4         |
| fHDF/TERT166                    | SCLC-21H    |
| GAMG                            | SH-SY5Y     |
| НаСаТ                           | SiHa        |
| HAP1                            | SK-BR-3     |
| HBEC3-KT                        | SK-MEL-30   |
| HBF TERT88                      | SuSa        |
| HDLM-2                          | T-47d       |
| HEK 293                         | THP-1       |
| HEL                             | TIME        |
| HeLa                            | U-138 MG    |
| Hep G2                          | U-2 OS      |
| HHSteC                          | U-2197      |
| HL-60                           | U-251 MG    |
| HMC-1                           | U-266/70    |
| HSkMC                           | U-266/84    |
| hTCEpi                          | U-698       |
| hTEC/SVTERT24-B                 | U-87 MG     |
| hTERT-HME1                      | U-937       |
| hTERT-RPE1                      | WM-115      |
| HUVEC TERT2                     |             |

# Step 1. Compare the Cell Atlas and Tox21 CPP2 Data Sets [TempO-seq]

## Baseline Expression Data Sets for the Case Study

### EPA Internal data [TempO-seq] Cell Atlas and Tox21 CPP2

6 overlapping cell types

| Cell atlas   | Tox21 cpp2  |
|--------------|-------------|
| A549         | BT-483      |
| A-704        | C3A         |
| ARPE-19      | Cal-148     |
| ASC52telo    | Cal-78      |
| BHY          | CCD-18Co    |
| BJ-5ta       | Daudi       |
| CCD-18Co     | Detroit-551 |
| CHON-001     | DoHH2       |
| Daudi        | EFM-19      |
| DMS-454      | HepG2       |
| DV-90        | hNP1        |
| HBEC3-KT     | HOS         |
| HepaRG_2D    | Hs.839.T    |
| HepaRG_3D    | Hs-5        |
| HepG2        | Huh-1       |
| HME-1        | Huh-7       |
| HPNE         | MCF-7       |
| HSAEC-1      | MG-63       |
| HTB-9        | MHH-CALL-4  |
| HUVEC        | NCI-H1092   |
| Ker-CT       | NCI-H1105   |
| KP-N-RT-BM-1 | NCI-H1436   |
| MCF-7        | NCI-H2106   |
| NCI-H1092    | NCI-H2171   |
| RPE-1        | PLC/PRF/5   |
| RPTEC        | Saos-2      |
| SET-2        | SU-DHL-6    |
| SK-MEL-28    | T47-D       |
| TeloHAEC     | U-2 OS      |
| TIME         |             |
| U-2 OS       |             |
|              |             |

**TempO-seq Cell Types** 

| Cell Line | Tissue Origin                       |
|-----------|-------------------------------------|
| MCF-7     | Breast                              |
| U-2 OS    | Bone                                |
| HepG2     | Liver                               |
| Daudi     | Peripheral Blood<br>(B lymphoblast) |
| CCD-18Co  | Colon                               |
| NCI-H1092 | Lung                                |

# Pearson Correlations show high reproducibility for the 6 common cell types within Cell Atlas and Tox21 CPP2, log<sub>2</sub>(CPM+1) TempO-seq Data

Notation: Cell atlas = ".x", Tox21 CPP2 = ".y", and \_1,\_2,\_3 denotes replicate number



• Pearson correlations between technical replicates in the same data set

• Pearson correlations between the two TempO-seq data sets

# Pearson Correlations show high reproducibility for the 6 common cell types within Cell Atlas and Tox21 CPP2, log<sub>2</sub>(CPM+1) TempO-seq Data

Notation: Cell atlas = ".x", Tox21 CPP2 = ".y", and \_1,\_2,\_3 denotes replicate number







- Very high reproducibility within technical replicates in the same data set
  - Pearson correlation ave 0.98 (range 0.89-1.00)
- Strong reproducibility between the two TempO-seq data sets
  - Pearson correlation ave 0.90 (range 0.77-0.94)

### Principal Component Analysis (PCA) shows that the two TempO-seq data sets were reproducible





# Step 2. Compare the Cell Atlas and Tox21 CPP2 Data Sets [TempO-seq] to the Human Protein Atlas (HPA) Data [RNA-seq]

### Baseline Expression Data Sets for the Case Study

EPA Internal data [TempO-seq]

Cell Atlas and Tox21 CPP2

External data [RNA-seq] Human Protein Atlas (HPA)

### 12 overlapping cell types

| Call attac   | T           |
|--------------|-------------|
|              | 10x21 cpp2  |
| A549         | B1-483      |
| A-704        | C3A         |
| ARPE-19      | Cal-148     |
| ASC52telo    |             |
| BHY          | CCD-18C0    |
| BJ-5ta       | Daudi       |
| CCD-18C0     | Detroit-551 |
| CHON-001     | DoHH2       |
| Daudi        | EFM-19      |
| DMS-454      | HepG2       |
| DV-90        | hNP1        |
| HBEC3-KT     | HOS         |
| HepaRG_2D    | Hs.839.T    |
| HepaRG_3D    | Hs-5        |
| HepG2        | Huh-1       |
| HME-1        | Huh-7       |
| HPNE         | MCF-7       |
| HSAEC-1      | MG-63       |
| HTB-9        | MHH-CALL-4  |
| HUVEC        | NCI-H1092   |
| Ker-CT       | NCI-H1105   |
| KP-N-RT-BM-1 | NCI-H1436   |
| MCF-7        | NCI-H2106   |
| NCI-H1092    | NCI-H2171   |
| RPE-1        | PLC/PRF/5   |
| RPTEC        | Saos-2      |
| SET-2        | SU-DHL-6    |
| SK-MEL-28    | T47-D       |
| TeloHAEC     | U-2 OS      |
| TIME         |             |
| U-2 OS       |             |

#### **RNA-seq Cell Types** Human Protein Atlas (HPA) HPA Cont. A-431 JURKAT A549 K-562 AF22 Karpas-707 AN3-CA LHCN-M2 ASC diff MCF7 ASC TERT1 MOLT-4 BEWO NB-4 NTERA-2 BJ hTERT+ OE19 BJ hTERT+ SV40 Large T+ PC-3 REH BJ hTERT+ SV40 Large T+ RasG12V CACO-2 RH-30 CAPAN-2 RPMI-8226 Daudi **RPTEC TERT1** FFO-21 RT4 fHDF/TERT166 SCLC-21H GAMG SH-SY5Y SiHa HaCaT HAP1 SK-BR-3 HBEC3-KT SK-MEL-30 HBF TERT88 SuSa HDLM-2 T-47d HEK 293 THP-1 HEL TIME HeLa U-138 MG U-2 OS Hep G2 U-2197 HHSteC HL-60 U-251 MG HMC-1 U-266/70 HSkMC U-266/84 hTCEpi U-698 hTEC/SVTERT24-B U-87 MG hTERT-HME1 U-937 hTERT-RPE1 WM-115 HUVEC TERT2

| Cell Type    | Tissue                         |
|--------------|--------------------------------|
| A549         | Lung                           |
| Daudi        | Haematopoietic<br>and lymphoid |
| HepG2        | Liver                          |
| MCF-7        | Breast                         |
| U-2 OS       | Bone                           |
| T47-D        | Breast                         |
| HBEC3-KT     | Lung                           |
| HME-1        | Breast, mammary gland          |
| IUVEC/TERT-2 | Blood vessel wall              |
| RPE-1        | Eye                            |
| RPTEC/TERT-1 | Kidney                         |
| TIME         | Skin                           |

Н

# The data distributions are very similar for each cell type

Histograms for internal TempO-seq data (left) vs Human Protein Atlas RNA-seq data (right)

Showing two cell types of interest



#### **Strong Pearson correlation coefficients**

Different cell types intra-platform: normally around 0.80 (0.69-0.97) Matching cell types inter-platform: 0.80 (0.75-0.82)

#### x = TempO-seq data

#### y = RNA-seq data

|        |            | A549 x | Daudi x      | HBEC3 KT      | x HenG2 x    | HMF 1 x       | HUVEC x | MCF 7 x | RPF 1 x | RPTFC x | TIMF x | U 2 05 x | T47 D x | 4549 v | Daudi v | HBFC3 KT v | HenG2 v | HMF 1 v | HUVFC v | MCF 7 v | RPF 1 v | RPTFC v | TIMF v | U 2 05 v T | 47 D v |
|--------|------------|--------|--------------|---------------|--------------|---------------|---------|---------|---------|---------|--------|----------|---------|--------|---------|------------|---------|---------|---------|---------|---------|---------|--------|------------|--------|
| σ      | 4549.x     | 1.0    | 0 0.         | 79 0.8        | 0 0.8        | 1 0.88        | 0.87    | 0.88    | 0.91    | 0.89    | 0.88   | 0.88     | 0.83    | 0.80   | 0.65    | 0.73       | 0.70    | 0.73    | 0.72    | 0.71    | 0.72    | 0.73    | 0.71   | 0.73       | 0.71   |
| Ū      | Daudi.x    | 0.7    | 79 1.        | 0.6           | 9 0.7        | 3 0.78        | 0.77    | 0.80    | 0.78    | 0.75    | 0.78   | 0.78     | 0.77    | 0.61   | 0.82    | 0.62       | 0.61    | 0.63    | 0.62    | 0.62    | 0.58    | 0.60    | 0.61   | 0.62       | 0.62   |
| Ś      |            |        | -            |               |              |               |         |         |         |         |        |          |         |        |         |            |         |         |         |         |         |         |        |            |        |
| Ó I    | HBEC3.KT.x | 0.8    | 30 0.        | 59 1.0        | 0 0.7        | 5 0.90        | 0.78    | 0.79    | 0.81    | 0.79    | 0.79   | 0.78     | 0.75    | 0.69   | 0.60    | 0.78       | 0.65    | 0.75    | 0.68    | 0.68    | 0.70    | 0.70    | 0.69   | 0.68       | 0.69   |
| ŏ      | HepG2.x    | 0.8    | B1 0.        | 73 0.7        | 75 1.0       | 0 0.79        | 0.77    | 0.80    | 0.79    | 0.78    | 0.77   | 0.79     | 0.79    | 0.66   | 0.61    | 0.65       | 0.79    | 0.65    | 0.64    | 0.65    | 0.64    | 0.65    | 0.64   | 0.65       | 0.65   |
|        | HME.1.x    | 0.8    | 38 0.        | 78 0.9        | 0 0.7        | 9 1.00        | 0.88    | 0.84    | 0.91    | 0.85    | 0.89   | 0.87     | 0.79    | 0.74   | 0.67    | 0.80       | 0.69    | 0.82    | 0.75    | 0.71    | 0.75    | 0.74    | 0.76   | 0.75       | 0.71   |
|        | HUVEC.x    | 0.8    | 37 0.        | 77 0.7        | 8 0.7        | 7 0.88        | 1.00    | 0.83    | 0.91    | 0.86    | 0.97   | 0.86     | 0.78    | 0.70   | 0.64    | 0.72       | 0.65    | 0.73    | 0.82    | 0.65    | 0.73    | 0.70    | 0.81   | 0.71       | 0.66   |
| Ψ      | MCF.7.x    | 0.8    | 38 0.        | 30 0.7        | 9 0.8        | 0 0.84        | 0.83    | 1.00    | 0.86    | 0.87    | 0.83   | 0.86     | 0.91    | 0.70   | 0.64    | 0.69       | 0.66    | 0.69    | 0.66    | 0.76    | 0.66    | 0.68    | 0.66   | 0.68       | 0.74   |
|        | RPE.1.x    | 0.9    | 91 0.        | 78 0.8        | 1 0.7        | 9 0.91        | 0.91    | 0.86    | 1.00    | 0.89    | 0.92   | 0.90     | 0.82    | 0.73   | 0.65    | 0.75       | 0.67    | 0.76    | 0.75    | 0.68    | 0.80    | 0.73    | 0.76   | 0.75       | 0.69   |
|        | RPTEC.x    | 0.8    | 39 0.        | 75 0.7        | 9 0.7        | 8 0.85        | 0.86    | 0.87    | 0.89    | 1.00    | 0.86   | 0.85     | 0.82    | 0.70   | 0.60    | 0.71       | 0.65    | 0.71    | 0.69    | 0.67    | 0.70    | 0.80    | 0.69   | 0.68       | 0.68   |
| ×      | TIME.x     | 0.8    | 38 0.        | 78 0.7        | 9 0.7        | 7 0.89        | 0.97    | 0.83    | 0.92    | 0.86    | 1.00   | 0.87     | 0.78    | 0.70   | 0.64    | 0.73       | 0.65    | 0.74    | 0.80    | 0.66    | 0.73    | 0.71    | 0.82   | 0.71       | 0.66   |
|        | U.2.OS.x   | 0.8    | 38 0.        | 78 0.7        | 8 0.7        | 9 0.87        | 0.86    | 0.86    | 0.90    | 0.85    | 0.87   | 1.00     | 0.83    | 0.68   | 0.61    | 0.69       | 0.64    | 0.70    | 0.68    | 0.65    | 0.70    | 0.67    | 0.68   | 0.78       | 0.66   |
|        | T47.D.x    | 0.8    | 33 0.        | 77 0.7        | 5 0.7        | 9 0.79        | 0.78    | 0.91    | 0.82    | 0.82    | 0.78   | 0.83     | 1.00    | 0.64   | 0.60    | 0.65       | 0.62    | 0.64    | 0.61    | . 0.67  | 0.62    | 0.64    | 0.60   | 0.63       | 0.75   |
|        | 4549.y     | .0     | <b>30</b> 0. | 51 0.6        | 9 0.6        | 6 0.74        | 0.70    | 0.70    | 0.73    | 0.70    | 0.70   | 0.68     | 0.64    | 1.00   | 0.78    | 0.88       | 0.86    | 0.86    | 0.86    | 0.89    | 0.86    | 0.88    | 0.85   | 0.88       | 0.87   |
|        | Daudi.y    | 0.6    | 65 <b>0.</b> | <b>32</b> 0.6 | 0.6          | 1 0.67        | 0.64    | 0.64    | 0.65    | 0.60    | 0.64   | 0.61     | 0.60    | 0.78   | 1.00    | 0.78       | 0.77    | 0.78    | 0.77    | 0.79    | 0.73    | 0.75    | 0.76   | 0.78       | 0.78   |
| σ      | HBEC3.KT.y | 0.7    | 73 0.        | 52 <b>0.7</b> | 8 0.6        | 5 0.80        | 0.72    | 0.69    | 0.75    | 0.71    | 0.73   | 0.69     | 0.65    | 0.88   | 0.78    | 1.00       | 0.83    | 0.94    | 0.88    | 0.86    | 0.87    | 0.89    | 0.87   | 0.87       | 0.86   |
| S.     | HepG2.y    | 0.7    | 70 0.        | 51 0.6        | 5 <b>0.7</b> | <b>9</b> 0.69 | 0.65    | 0.66    | 0.67    | 0.65    | 0.65   | 0.64     | 0.62    | 0.86   | 0.77    | 0.83       | 1.00    | 0.81    | 0.81    | . 0.85  | 0.79    | 0.82    | 0.79   | 0.82       | 0.83   |
| Ϋ́,    | HME.1.y    | 0.7    | 73 0.        | 53 0.7        | 5 0.6        | 5 <b>0.82</b> | 0.73    | 0.69    | 0.76    | 0.71    | 0.74   | 0.70     | 0.64    | 0.86   | 0.78    | 0.94       | 0.81    | 1.00    | 0.88    | 0.83    | 0.89    | 0.88    | 0.87   | 0.87       | 0.83   |
| <      | HUVEC.y    | 0.7    | 72 0.        | 52 0.6        | 6.0 8        | 4 0.75        | 0.82    | 0.66    | 0.75    | 0.69    | 0.80   | 0.68     | 0.61    | 0.86   | 0.77    | 0.88       | 0.81    | 0.88    | 1.00    | 0.81    | 0.89    | 0.86    | 0.95   | 0.86       | 0.81   |
| Z      | MCF.7.y    | 0.7    | 71 0.        | 52 0.6        | 6.0          | 5 0.71        | 0.65    | 0.76    | 0.68    | 0.67    | 0.66   | 0.65     | 0.67    | 0.89   | 0.79    | 0.86       | 0.85    | 0.83    | 0.81    | . 1.00  | 0.80    | 0.84    | 0.80   | 0.85       | 0.91   |
|        | RPE.1.y    | 0.7    | 72 0.        | 58 0.7        | 0.6          | 4 0.75        | 0.73    | 0.66    | 0.80    | 0.70    | 0.73   | 0.70     | 0.62    | 0.86   | 0.73    | 0.87       | 0.79    | 0.89    | 0.89    | 0.80    | 1.00    | 0.88    | 0.89   | 0.87       | 0.82   |
| н I    | RPTEC.y    | 0.7    | 73 0.        | 50 0.7        | 0 0.6        | 5 0.74        | 0.70    | 0.68    | 0.73    | 0.80    | 0.71   | 0.67     | 0.64    | 0.88   | 0.75    | 0.89       | 0.82    | 0.88    | 0.86    | 0.84    | 0.88    | 1.00    | 0.85   | 0.85       | 0.85   |
| ~      | TIME.y     | 0.7    | 71 0.        | 51 0.6        | 9 0.6        | 4 0.76        | 0.81    | 0.66    | 0.76    | 0.69    | 0.82   | 0.68     | 0.60    | 0.85   | 0.76    | 0.87       | 0.79    | 0.87    | 0.95    | 0.80    | 0.89    | 0.85    | 1.00   | 0.85       | 0.80   |
| $\sim$ | J.2.OS.y   | 0.7    | 73 0.        | 52 0.6        | 8 0.6        | 5 0.75        | 0.71    | 0.68    | 0.75    | 0.68    | 0.71   | 0.78     | 0.63    | 0.88   | 0.78    | 0.87       | 0.82    | 0.87    | 0.86    | 0.85    | 0.87    | 0.85    | 0.85   | 1.00       | 0.85   |
|        | F47.D.y    | 0.7    | 71 0.        | 52 0.6        | 9 0.6        | 5 0.71        | 0.66    | 0.74    | 0.69    | 0.68    | 0.66   | 0.66     | 0.75    | 0.87   | 0.78    | 0.86       | 0.83    | 0.83    | 0.81    | 0.91    | 0.82    | 0.85    | 0.80   | 0.85       | 1.00   |

### Percentage of genes with matching expression magnitude at different levels in both data sets has high agreement

|           | Low expressio   | n                |                               |                                 | Hi             | gh expression  |  |  |  |  |  |  |
|-----------|-----------------|------------------|-------------------------------|---------------------------------|----------------|----------------|--|--|--|--|--|--|
|           | in both platfor | 1 both platforms |                               |                                 |                |                |  |  |  |  |  |  |
|           |                 | TempO-sec        | log <sub>2</sub> (CPM+1) data | vs RNA-seq log <sub>2</sub> (TP | M+1) data      |                |  |  |  |  |  |  |
| Cell_type | match_level_1   | match_level_2    | match_level_5                 | match_level_7                   | match_level_10 | match_level_14 |  |  |  |  |  |  |
| A549      | 90%             | 87%              | 82%                           | 92%                             | 99.0%          | 99.98%         |  |  |  |  |  |  |
| Daudi     | 90%             | 89%              | 85%                           | 92%                             | 99.1%          | 99.98%         |  |  |  |  |  |  |
| HBEC3.KT  | 89%             | 86%              | 82%                           | 93%                             | 99.2%          | 99.97%         |  |  |  |  |  |  |
| HepG2     | 90%             | 87%              | 82%                           | 92%                             | 99.0%          | 99.98%         |  |  |  |  |  |  |
| HME.1     | 91%             | 89%              | 83%                           | 92%                             | 99.1%          | 99.99%         |  |  |  |  |  |  |
| HUVEC     | 92%             | 89%              | 83%                           | 92%                             | 99.1%          | 99.99%         |  |  |  |  |  |  |
| MCF.7     | 88%             | 85%              | 81%                           | 91%                             | 98.9%          | 99.99%         |  |  |  |  |  |  |
| RPE.1     | 91%             | 88%              | 83%                           | 92%                             | 99.1%          | 99.99%         |  |  |  |  |  |  |
| RPTEC     | 91%             | 87%              | 83%                           | 92%                             | 99.1%          | 99.98%         |  |  |  |  |  |  |
| TIME      | 89%             | 85%              | 79%                           | 90%                             | 98.9%          | 99.99%         |  |  |  |  |  |  |
| U.2.OS    | 91%             | 89%              | 83%                           | 92%                             | 99.1%          | 99.99%         |  |  |  |  |  |  |
| T47.D     | 88%             | 86%              | 80%                           | 91%                             | 99.1%          | 99.99%         |  |  |  |  |  |  |
|           |                 |                  |                               |                                 |                |                |  |  |  |  |  |  |
| average   | 90%             | 87%              | 82%                           | 92%                             | 99.1%          | 99.99%         |  |  |  |  |  |  |
| min       | 88%             | 85%              | 79%                           | 90%                             | 98.9%          | 99.97%         |  |  |  |  |  |  |
| max       | 92%             | 89%              | 85%                           | 93%                             | 99.2%          | 99.99%         |  |  |  |  |  |  |

match\_level\_1: Percentage that internal data >= 1 & HPA data >= 1 OR internal data < 1 & HPA data < 1

TempO-seq minus RNA-seq log<sub>2</sub>(expression level) is centered around zero across cell types, showing strong replicability



-15

## Principal component analysis (PCA)

TempO-seq vs RNA-seq





The expression level in genes driving the divergence in PC1 consistently have low expression in one platform and high expression in the other platform, across cell types



Method a) Removing genes with the highest difference in gene expression resolved the PC1 platform divergence

4,398 of the 19,119 genes were removed that had abs(ave log<sub>2</sub>CPM diff) > 1.5

#### TempO-seq vs RNA-seq PCA

Subset of genes with best replicability



# **Relative Log Expression (RLE) Method**

- Calculated average across cell types for the TempO-seq data and separately for the RNA-seq data
- Divided the log<sub>2</sub>(CPM) for each cell line by the average expression for that data set

ENSG00000167658 ENSG00000213145 ENSG00000115648 ENSG0000057019 ENSG00000104687 ENSG00000182220 ENSG00000108298 ENSG00000126261 ENSG0000082898 ENSG00000112245 ENSG00000111142 ENSG00000108953 ENSG00000135046 ENSG00000109971

|   | ensembl_gene  |
|---|---------------|
|   | ENSG000002690 |
| n | ENSG000001679 |
|   | ENSG000001619 |
|   | ENSG000001085 |
|   | ENSG000001779 |
|   | ENSG000001116 |
|   | ENSG00000672  |
|   | ENSG000001827 |
|   | ENSG000002054 |
|   | ENSG000001840 |

| ensembl_gene    | A549.x | Daudi.x | HBEC3.KT.x H | lepG2.x | HME.1.x | HUVEC.x | MCF.7.x | RPE.1.x            | RPTEC.x | TIME.x | U.2.OS.x | T47.D.x | Average |
|-----------------|--------|---------|--------------|---------|---------|---------|---------|--------------------|---------|--------|----------|---------|---------|
| ENSG00000167658 | 10.1   | 11.5    | 12.5         | 11.6    | 11.6    | 5 11.3  | 11.3    | 3 11.0             | 11.0    | 10.7   | 10.9     | 11.4    | 11.2    |
| ENSG00000213145 | 10.0   | 9.8     | 4.1          | 8.2     | 0.8     | 3 1.5   | 3.2     | 2 0.9              | 1.7     | 4.4    | 1.4      | 8.1     | 4.5     |
| ENSG00000115648 | 10.0   | 0.4     | 6.7          | 0.5     | 9.9     | 0.0     | 11.3    | L 8.4              | 2.7     | 6.8    | 5.2      | 9.6     | 5.9     |
| ENSG00000057019 | 10.0   | 0.3     | 7.4          | 6.9     | 10.2    | 7.5     | 5.7     | 7 10.1             | 8.7     | 6.0    | 9.2      | 4.7     | 7.2     |
| ENSG00000104687 | 10.0   | 7.5     | 7.2          | 8.4     | 6.9     | ) 7.1   | 7.8     | 3                  | 8.0     | 7.3    | 6.5      | 7.2     | 7.6     |
| ENSG00000182220 | 10.0   | 8.5     | 10.1         | 8.6     | 9.5     | 5 10.0  | 9.7     | 7 9.7              | 10.3    | 10.1   | 10.4     | 10.4    | 9.8     |
| ENSG00000108298 | 10.0   | 10.0    | 6.3          | 7.0     | 7.7     | 9.8     | 8.5     | <mark>5</mark> 9.7 | 10.1    | . 9.2  | 9.0      | 7.8     | 8.8     |
| ENSG00000126261 | 10.0   | 9.5     | 6.3          | 8.2     | 8.2     | 2 8.6   | 9.0     | ) 8.7              | 8.3     | 8.7    | 9.3      | 8.3     | 8.6     |
| ENSG0000082898  | 10.0   | 9.8     | 7.8          | 8.6     | 9.4     | 9.2     | 10.0    | 9.5                | 9.0     | 9.4    | 10.3     | 10.1    | 9.4     |
| ENSG00000112245 | 10.0   | 7.4     | 5.9          | 9.7     | 6.5     | 5 8.3   | 9.0     | 0.8                | 8.3     | 7.9    | 9.3      | 8.8     | 8.3     |
| ENSG00000111142 | 10.0   | 10.5    | 8.8          | 8.2     | 9.5     | 9.8     | 9.6     | 5 9.6              | 9.5     | 9.6    | 9.1      | 9.6     | 9.5     |
| ENSG00000108953 | 10.0   | 9.7     | 9.5          | 7.3     | 10.4    | 10.6    | 9.5     | 5 10.6             | 10.1    | 10.6   | 9.4      | 7.8     | 9.6     |
| ENSG00000135046 | 12.5   | 1.1     | 8.9          | 1.9     | 10.8    | 3 11.5  | 6.2     | 2 11.2             | 11.9    | 11.9   | 11.1     | 5.0     | 8.7     |
| ENSG00000109971 | 12.2   | 12.2    | 9.4          | 8.8     | 12.3    | 12.6    | 11.9    | ) 12.1             | 12.8    | 12.3   | 11.8     | 12.0    | 11.7    |
| ENSG00000111716 | 12.1   | 10.9    | 11.0         | 1.5     | 11.2    | 11.0    | 2.3     | 3 11.0             | 13.2    | 10.0   | 10.6     | 1.4     | 8.9     |

| ensembl_gene    | A549.x | Daudi.x            | HBEC3.KT.x | HepG2.x | HME.1.x | HUVEC.x | MCF.7.x | RPE.1.x | RPTEC.x | TIME.x | U.2.OS.x | T47.D.x |
|-----------------|--------|--------------------|------------|---------|---------|---------|---------|---------|---------|--------|----------|---------|
| ENSG00000269028 | 0.9    | 9 1.0              | 1.1        | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0    | 1.0      | 1.0     |
| ENSG00000167996 | 2.2    | 2 2.2              | 0.9        | 1.8     | 0.2     | 0.3     | 0.7     | 0.2     | 0.4     | 1.0    | 0.3      | 1.8     |
| ENSG00000161970 | 1.7    | <mark>7</mark> 0.1 | 1.1        | 0.1     | 1.7     | 0.0     | 1.9     | 1.4     | 0.5     | 1.1    | 0.9      | 1.6     |
| ENSG00000108518 | 1.4    | 4 O.C              | 1.0        | 1.0     | 1.4     | 1.0     | 0.8     | 1.4     | 1.2     | 0.8    | 1.3      | 0.7     |
| ENSG00000177954 | 1.3    | 3 1.0              | 1.0        | 1.1     | 0.9     | 0.9     | 1.0     | 0.9     | 1.1     | 1.0    | 0.9      | 1.0     |
| ENSG00000111640 | 1.(    | 0.9                | 1.0        | 0.9     | 1.0     | 1.0     | 1.0     | 1.0     | 1.1     | 1.0    | 1.1      | 1.1     |
| ENSG0000067225  | 1.3    | 1 1.1              | 0.7        | 0.8     | 0.9     | 1.1     | 1.0     | 1.1     | . 1.2   | 1.1    | 1.0      | 0.9     |
| ENSG00000182718 | 1.2    | 2 1.1              | 0.7        | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0    | 1.1      | 1.0     |
| ENSG00000205426 | 1.3    | 1 1.0              | 0.8        | 0.9     | 1.0     | 1.0     | 1.1     | 1.0     | 1.0     | 1.0    | 1.1      | 1.1     |
| ENSG00000184009 | 1.2    | 2 0.9              | 0.7        | 1.2     | 0.8     | 1.0     | 1.1     | 1.0     | 1.0     | 1.0    | 1.1      | 1.1     |
| ENSG00000213741 | 1.3    | 1 1.1              | 0.9        | 0.9     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0     | 1.0    | 1.0      | 1.0     |
| ENSG00000181019 | 1.(    | 0 1.0              | 1.0        | 0.8     | 1.1     | 1.1     | 1.0     | 1.1     | . 1.0   | 1.1    | 1.0      | 0.8     |
| ENSG00000135046 | 1.4    | 4 0.1              | 1.0        | 0.2     | 1.2     | 1.3     | 0.7     | 1.3     | 1.4     | 1.4    | 1.3      | 0.6     |
| ENSG00000109971 | 1.(    | 0 1.0              | 0.8        | 0.8     | 1.1     | 1.1     | 1.0     | 1.0     | 1.1     | 1.1    | 1.0      | 1.0     |
| ENSG00000111716 | 1.4    | 4 1.2              | 1.2        | 0.2     | 1.3     | 1.2     | 0.3     | 1.2     | 1.5     | 1.1    | 1.2      | 0.2     |

#### Pearson correlations comparing Relative Log Expression (RLE) for TempO-seq data vs RLE RNA-seq data made cell line differences more pronounced

#### x = TempO-seq data

#### y = RNA-seq data

|                    |            | A549.x | Daudi.x | HBEC3.KT.x | HepG2.x | HME.1.x | HUVEC.x | MCF.7.x | RPE.1.x | RPTEC.x T | IME.x | U.2.OS.x | T47.D.x | A549.y | Daudi.y | HBEC3.KT.y | HepG2.y | HME.1.y | HUVEC.y | MCF.7.y | RPE.1.y | RPTEC.y | TIME.y | U.2.OS.y 1 | T47.D.y |
|--------------------|------------|--------|---------|------------|---------|---------|---------|---------|---------|-----------|-------|----------|---------|--------|---------|------------|---------|---------|---------|---------|---------|---------|--------|------------|---------|
|                    | 4549.x     | 1.00   | -0.12   | -0.09      | -0.08   | -0.07   | -0.09   | -0.04   | -0.02   | -0.03     | -0.07 | -0.10    | -0.09   | 0.49   | -0.09   | -0.03      | -0.03   | -0.02   | -0.05   | 0.00    | -0.03   | -0.02   | -0.06  | -0.05      | -0.05   |
| S                  | Daudi.x    | -0.12  | 1.00    | -0.12      | -0.11   | -0.13   | -0.11   | -0.12   | -0.13   | -0.13     | -0.09 | -0.14    | -0.12   | -0.10  | 0.66    | -0.10      | -0.09   | -0.08   | -0.10   | -0.06   | -0.10   | -0.10   | -0.06  | -0.05      | -0.07   |
| Ö                  | HBEC3.KT.x | -0.09  | -0.12   | 1.00       | -0.10   | 0.11    | -0.11   | -0.07   | -0.08   | -0.06     | -0.09 | -0.14    | -0.10   | -0.01  | -0.06   | 0.37       | -0.05   | 0.15    | -0.06   | 0.01    | 0.00    | -0.01   | -0.03  | -0.09      | 0.01    |
| Q                  | HepG2.x    | -0.08  | -0.11   | -0.10      | 1.00    | -0.14   | -0.14   | -0.12   | -0.15   | -0.11     | -0.15 | -0.15    | -0.10   | -0.03  | -0.07   | -0.11      | 0.72    | -0.11   | -0.11   | -0.04   | -0.10   | -0.09   | -0.09  | -0.10      | -0.09   |
|                    | HME.1.x    | -0.07  | -0.13   | 0.11       | -0.14   | 1.00    | -0.03   | -0.10   | 0.07    | -0.07     | 0.03  | -0.13    | -0.15   | -0.03  | -0.07   | 0.22       | -0.10   | 0.40    | 0.03    | -0.05   | 0.07    | -0.04   | 0.03   | -0.08      | -0.09   |
|                    | HUVEC.x    | -0.09  | -0.11   | -0.11      | -0.14   | -0.03   | 1.00    | -0.14   | 0.01    | -0.09     | 0.30  | -0.15    | -0.17   | -0.07  | -0.07   | -0.02      | -0.11   | 0.01    | 0.58    | -0.08   | 0.03    | -0.06   | 0.30   | -0.11      | -0.10   |
| Ĕ                  | MCF.7.x    | -0.04  | -0.12   | -0.07      | -0.12   | -0.10   | -0.14   | 1.00    | -0.11   | -0.06     | -0.14 | -0.12    | 0.10    | 0.03   | -0.07   | 0.00       | -0.07   | -0.06   | -0.11   | 0.42    | -0.07   | -0.04   | -0.09  | -0.07      | 0.15    |
| п                  | RPE.1.x    | -0.02  | -0.13   | -0.08      | -0.15   | 0.07    | 0.01    | -0.11   | 1.00    | -0.03     | 0.05  | -0.09    | -0.14   | -0.03  | -0.10   | 0.04       | -0.11   | 0.12    | 0.06    | -0.06   | 0.46    | 0.00    | 0.05   | -0.07      | -0.11   |
| <u> </u>           | RPTEC.x    | -0.03  | -0.13   | -0.06      | -0.11   | -0.07   | -0.09   | -0.06   | -0.03   | 1.00      | -0.07 | -0.14    | -0.08   | -0.01  | -0.11   | 0.00       | -0.08   | -0.02   | -0.05   | -0.06   | 0.01    | 0.69    | -0.07  | -0.11      | -0.06   |
|                    | TIME.x     | -0.07  | -0.09   | -0.09      | -0.15   | 0.03    | 0.30    | -0.14   | 0.05    | -0.07     | 1.00  | -0.17    | -0.19   | -0.05  | -0.05   | 0.04       | -0.12   | 0.08    | 0.38    | -0.10   | 0.05    | -0.05   | 0.47   | -0.15      | -0.15   |
|                    | J.2.OS.x   | -0.10  | -0.14   | -0.14      | -0.15   | -0.13   | -0.15   | -0.12   | -0.09   | -0.14     | -0.17 | 1.00     | -0.11   | -0.06  | -0.11   | -0.13      | -0.13   | -0.12   | -0.15   | -0.08   | -0.04   | -0.12   | -0.12  | 0.64       | -0.08   |
|                    | F47.D.x    | -0.09  | -0.12   | -0.10      | -0.10   | -0.15   | -0.17   | 0.10    | -0.14   | -0.08     | -0.19 | -0.11    | 1.00    | -0.03  | -0.06   | -0.08      | -0.08   | -0.11   | -0.13   | 0.12    | -0.06   | -0.06   | -0.09  | -0.07      | 0.56    |
|                    | A549.y     | 0.49   | -0.10   | -0.01      | -0.03   | -0.03   | -0.07   | 0.03    | -0.03   | -0.01     | -0.05 | -0.06    | -0.03   | 1.00   | -0.14   | -0.06      | -0.06   | -0.07   | -0.10   | -0.03   | -0.06   | -0.04   | -0.10  | -0.13      | -0.08   |
|                    | Daudi.y    | -0.09  | 0.66    | -0.06      | -0.07   | -0.07   | -0.07   | -0.07   | -0.10   | -0.11     | -0.05 | -0.11    | -0.06   | -0.14  | 1.00    | -0.12      | -0.10   | -0.11   | -0.12   | -0.10   | -0.13   | -0.13   | -0.08  | -0.14      | -0.12   |
| eq                 | НВЕСЗ.КТ.у | -0.03  | -0.10   | 0.37       | -0.11   | 0.22    | -0.02   | 0.00    | 0.04    | 0.00      | 0.04  | -0.13    | -0.08   | -0.06  | -0.12   | 1.00       | -0.12   | 0.27    | 0.02    | -0.07   | -0.02   | 0.01    | -0.03  | -0.21      | -0.09   |
| S                  | HepG2.y    | -0.03  | -0.09   | -0.05      | 0.72    | -0.10   | -0.11   | -0.07   | -0.11   | -0.08     | -0.12 | -0.13    | -0.08   | -0.06  | -0.10   | -0.12      | 1.00    | -0.14   | -0.13   | -0.09   | -0.14   | -0.11   | -0.11  | -0.16      | -0.11   |
| $\dot{\mathbf{A}}$ | HME.1.y    | -0.02  | -0.08   | 0.15       | -0.11   | 0.40    | 0.01    | -0.06   | 0.12    | -0.02     | 0.08  | -0.12    | -0.11   | -0.07  | -0.11   | 0.27       | -0.14   | 1.00    | 0.04    | -0.10   | 0.05    | -0.02   | -0.01  | -0.18      | -0.14   |
| $\geq$             | HUVEC.y    | -0.05  | -0.10   | -0.06      | -0.11   | 0.03    | 0.58    | -0.11   | 0.06    | -0.05     | 0.38  | -0.15    | -0.13   | -0.10  | -0.12   | 0.02       | -0.13   | 0.04    | 1.00    | -0.14   | 0.03    | -0.04   | 0.28   | -0.20      | -0.17   |
| $\sim$             | MCF.7.y    | 0.00   | -0.06   | 0.01       | -0.04   | -0.05   | -0.08   | 0.42    | -0.06   | -0.06     | -0.10 | -0.08    | 0.12    | -0.03  | -0.10   | -0.07      | -0.09   | -0.10   | -0.14   | 1.00    | -0.13   | -0.11   | -0.14  | -0.14      | 0.09    |
|                    | RPE.1.y    | -0.03  | -0.10   | 0.00       | -0.10   | 0.07    | 0.03    | -0.07   | 0.46    | 0.01      | 0.05  | -0.04    | -0.06   | -0.06  | -0.13   | -0.02      | -0.14   | 0.05    | 0.03    | -0.13   | 1.00    | 0.00    | 0.01   | -0.13      | -0.14   |
|                    | RPTEC.y    | -0.02  | -0.10   | -0.01      | -0.09   | -0.04   | -0.06   | -0.04   | 0.00    | 0.69      | -0.05 | -0.12    | -0.06   | -0.04  | -0.13   | 0.01       | -0.11   | -0.02   | -0.04   | -0.11   | 0.00    | 1.00    | -0.09  | -0.17      | -0.10   |
| >                  | TIME.y     | -0.06  | -0.06   | -0.03      | -0.09   | 0.03    | 0.30    | -0.09   | 0.05    | -0.07     | 0.47  | -0.12    | -0.09   | -0.10  | -0.08   | -0.03      | -0.11   | -0.01   | 0.28    | -0.14   | 0.01    | -0.09   | 1.00   | -0.19      | -0.16   |
|                    | J.2.OS.y   | -0.05  | -0.05   | -0.09      | -0.10   | -0.08   | -0.11   | -0.07   | -0.07   | -0.11     | -0.15 | 0.64     | -0.07   | -0.13  | -0.14   | -0.21      | -0.16   | -0.18   | -0.20   | -0.14   | -0.13   | -0.17   | -0.19  | 1.00       | -0.13   |
|                    | F47.D.y    | -0.05  | -0.07   | 0.01       | -0.09   | -0.09   | -0.10   | 0.15    | -0.11   | -0.06     | -0.15 | -0.08    | 0.56    | -0.08  | -0.12   | -0.09      | -0.11   | -0.14   | -0.17   | 0.09    | -0.14   | -0.10   | -0.16  | -0.13      | 1.00    |

Pearson correlations for different cell types intra-platform: generally around 0.07 (0.00-0.19) Pearson correlation for matching cell types inter-platform: 0.54 (0.37-0.72) Method b) Normalizing the data by calculating relative log expression also resolved the platform divergence along PC1

### TempO-seq vs RNA-seq PCA

Using RLE values



# **Conclusions and Future Work**



**RNA-seq and TempO-seq** showed consistent gene expression findings

Similar data distributions

High pearson correlations

And after normalization, the data grouped by cell type and not by technology platform



This work can help increase confidence in using TempOseq transcriptomic data

This work helps to validate TempOseq against the RNA-seq goldstandard technique



Future work: Determine whether RNA-seq and TempO-seq data can be combined in chemical studies

Need data for comparing chemical perturbation data with both platforms to see if the data sets can be combined. This work using baseline expression data is a good foundation for such work. Many thanks to the high-throughput transcriptomics team for their input on these methods!

#### Special thanks to:

- Richard Judson
- Joshua Harrill
- Logan Everett
- Woody Setzer
- Imran Shah
- Joseph Bundy
- Bryant Chambers
- Sarah Davidson



Contact information Email: taylor.laura@epa.gov Work phone: 919-541-1060

# Extra Slides

Note for application of these methods

- When performing RLE normalization, gene expression levels can then only be compared across different cell types (not within a single cell type)
- Keeping only the genes that were the most replicable across the different cell types enables comparison to still be done both within a single cell type and/or across cell types, but this list of genes needs to be replicated or a new list can be generated for each study's analysis based on their own data

### PCA on relative log expression (RLE) compared to average across cell types



#### PCA for Internal and HPA RLE

0



200

PC1

# Repeating RLE PCA with a subset of cell types



#### PCA for Internal and HPA RLE, no Daudi/HepG2/U2-OS







PCA for Internal and HPA RLE, no cancer cell lines



# Applying RLE normalization to the Internal Data



# PCA: Normalization

### After normalizing by gene



Normalization method: calculated internal log2count minus HPA log2count for all cell types, took average difference across all cell types, then added that average difference to the HPA values

# **RNA-seq Method**

(more established)

#### Key features [provided by Illumina]



**TruSeg DNA Exome** 

Illumina Experiment Manager

BaseSpace Clarity LIMS

accuracy.



Sequence

2.5 days/6 hours hands-on time

5 days/30 minutes hands-on

#### HiSeq SBS Kit V4

A cost-effective library preparation and exome Ready-to-load reagents for sequencing by enrichment solution with industry-leading synthesis on enabled HiSeq sequencing systems.

#### HiSeq PE Cluster Kit v4 cBot

Reagents for paired-end cluster generation on the cBot cluster amplification system.

#### Enrichment BaseSpace App

Rapid alignment and variant detection for small, structural, and copy number variant calling, variant annotation, and enrichment metrics calculation.

Analyze

2–3 hours

#### Browse Sample Datasets in BaseSpace Sequence Hub

HiSeq 2500 Exome Run Data HiSeq 2500 Exome Project Data



# TempO-seq Method

#### Key features [provided by BioSpyder]

- input down to 10 pg with single-base specificity
- no RNA extraction, cDNA conversion or preamplification
- no proprietary instrumentation required: standard PCR cycler or microplate incubator is all you need
- maximize sequence capacity due to short barcode reads: up to 6,144 samples in one run
- "off the shelf" whole transcriptome or surrogate panels

   or fully customizable panels assessing any number of
  isoforms, gene fusions, mutations, or SNPs in any
  species



# US EPA Internal Data: Cell Atlas and Tox21 CPP2

- Both of these TempO-seq data sets were generated at the EPA in 2018-2019
- Clinton Willis performed sample collection for both data sets
- Cells came from the same cryostocks



# THE HUMAN PROTEIN ATLAS 🖡

- Publicly available RNA-seq and protein expression data for many tissues of the human body
- Used the Illumina HiSeq2500 platform for sequencing at approximately 20 million reads depth
- More details: HPA is a Swedish-based program started in 2003 with the aim to map all the human proteins in cells, tissues and organs using integration of various omics technologies, including antibody-based imaging, mass spectrometry-based proteomics, transcriptomics and systems biology



# Common Cell Types: Cell Atlas and Tox21 CPP2

| Cell Line | ExPASy<br>CelloSaurus<br>Accession | Tissue Origin                       | Disease                                          | Growth<br>Mode | Morphology  | Source              |
|-----------|------------------------------------|-------------------------------------|--------------------------------------------------|----------------|-------------|---------------------|
| MCF-7     | CVCL_0031                          | Breast                              | Adenocarcinoma                                   | adherent       | epithelial  | ATCC<br>(HTB-22™)   |
| U-2 OS    | CVCL_0042                          | Bone                                | Osteosarcoma                                     | adherent       | epithelial  | ATCC<br>(HTB-96™)   |
| HepG2     | CVCL_0027                          | Liver                               | Hepatoblastoma                                   | adherent       | epithelial  | ATCC<br>(HB-8065™)  |
| Daudi     | CVCL_0008                          | Peripheral Blood<br>(B lymphoblast) | Burkitt's<br>Lymphoma                            | suspension     | lymphoblast | ATCC<br>(CCL-213™)  |
| CCD-18Co  | CVCL_2379                          | Colon                               | none                                             | adherent       | fibroblast  | ATCC<br>(CRL-1459™) |
| NCI-H1092 | CVCL_1454                          | Lung                                | Small cell lung<br>cancer (stage E<br>carcinoma) | suspension     | n/a         | ATCC<br>(CRL-5855™) |

For genes driving PC1 across the different cell types, there was consistent gene expression within the replicates for each individual cell lines. This further shows that the PCA grouping was driven by cell type differences and not by differences in the two TempO-seq data sets.



# Cell line information

### Overlap between internal TempO-seq and HPA RNA-seq cell lines

| Internal<br>Data_set    | Cell Type    | Vendor | Vendor Part<br>Number | Tissue                                           | Disease State                           | Growth Mode | Media Formulation (**All use 1% P.S.G. for<br>antibiotic**)                                                   |
|-------------------------|--------------|--------|-----------------------|--------------------------------------------------|-----------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------|
| CellAtlas,<br>Tox21CPP2 | A549         | ATCC   | CCL-185               | Lung                                             | Lung carcinoma                          | Adherent    | DMEM + 10% HI-FBS                                                                                             |
| CellAtlas               | Daudi        | ATCC   | CCL-213               | Haematopoietic<br>and lymphoid                   | Peripheral blood B<br>lymphoblast cells | Suspension  | RPMI-1640 Medium + 10% HI-FBS                                                                                 |
| CellAtlas,<br>Tox21CPP2 | HepG2        | ATCC   | HB-8065               | Liver                                            | Hepatocellular<br>carcinoma             | Adherent    | DMEM + 10% HI-FBS                                                                                             |
| CellAtlas,<br>Tox21CPP2 | MCF-7        | ATCC   | HTB-22                | Breast                                           | Adenocarcinoma                          | Adherent    | DMEM + 10% HI-FBS                                                                                             |
| CellAtlas,<br>Tox21CPP2 | U-2 OS       | ATCC   | HTB-96                | Bone                                             | Osteosarcoma                            | Adherent    | DMEM + 10% HI-FBS                                                                                             |
| Tox21CPP2               | T47-D        | ATCC   | HTB-133               | Breast                                           | Ductal carcinoma                        | Adherent    | RPMI-1640 + 10% HI-FBS + 0.2 U/mL Insulin<br>(1.03 mL of stock)                                               |
| CellAtlas               | HBEC3-KT     | ATCC   | CRL-4051              | Lung, bronchial                                  | hTERT Immortalized                      | Adherent    | Airway Epithelial Cell Basal Medium + Bronchial<br>Epithelial Cell Growth Kit                                 |
| CellAtlas               | HME-1        | ATCC   | CRL-4010              | Breast, mammary gland                            | hTERT Immortalized                      | Adherent    | SABM Basal Medium + SAGM SingleQuots<br>BulletKit                                                             |
| CellAtlas               | HUVEC/TERT-2 | ATCC   | CRL-4053              | Umbilical vascular<br>endothelium                | hTERT Immortalized                      | Adherent    | Vascular Cell Basal Medium + Vascular<br>Endothelial Cell Growth Kit (VEGF)                                   |
| CellAtlas               | RPE-1        | ATCC   | CRL-4000              | Retina, eye                                      | hTERT Immortalized                      | Adherent    | DMEM:F12 + 10% HI-FBS + 0.01 mg/mL<br>Hygromycin B                                                            |
| CellAtlas               | RPTEC/TERT-1 | ATCC   | CRL-4031              | Renal cortex,<br>proximal tubes                  | hTERT Immortalized                      | Adherent    | DMEM:F12 + hTERT RPTEC Growth Kit                                                                             |
| CellAtlas               | TIME         | ATCC   | CRL-4025              | Foreskin, dermal<br>microvascular<br>endothelium | hTERT Immortalized                      | Adherent    | Vascular Cell Basal Medium + Microvascular<br>Endothelial Cell Growth Kit (VEGF) + 12.5<br>µg/mL Blasticidine |

# Made QQ plots

The QQ plots are better at the tails for the internal TempO-seq data than the HPA RNA-seq data for log2count >0.5. These two plots are representative of all twelve cell types:



Because of this, I tried removing points at the tails of the distribution and repeated PCA, but there was still a clear PC1 divergence.

Method b

# Relative Log Expression (RLE)

Calculates the log expression level relative to a reference value

# Example:

| Reference  | Sample     | RLE       |
|------------|------------|-----------|
| = 4 logCPM | = 8 logCPM | = 8/4 = 2 |