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Disclaimers

• The views expressed in this presentation are those of the authors and 
do not necessarily reflect the views or policies of the US EPA or the 
European Chemicals Agency (ECHA).

• Mention of or reference to commercial products does not imply any 
official US EPA or ECHA endorsement.
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Outline

• Read-Across and ongoing issues with read-across acceptance
• Generalised Read-Across (GenRA)
• Case study to compile expert driven read-across examples from REACH 
dossiers to evaluate similarity contexts and performance relative to 
GenRA

• Summary remarks
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Read-across
• Read-across describes the method of filling a data gap whereby a 

chemical with existing data values is used to make a prediction for a 
‘similar’ chemical.

• Used within analogue and category approaches.
• A target chemical is a chemical which has a data gap that needs to be 

filled i.e. the subject of the read-across.
• A source analogue is a chemical that has been identified as an 

appropriate chemical for use in a read-across based on similarity to the 
target chemical and existence of relevant data.

Source 
chemical

Target 
chemical

Property  





Reliable data

Missing data Predicted to be 
harmful

Known to be 
harmful

Acute 
toxicity?
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• Although there is much technical guidance for developing read-across 
assessment, acceptance remains an issue. 

• One issue hindering acceptance relates to what an acceptable level of 
uncertainty is for a read-across prediction. 

• Many efforts have been undertaken to identify the sources of 
uncertainty in read-across, characterise them in a consistent manner and 
identify practical strategies to address and reduce those uncertainties.

• Notable in these efforts have been the development of 
frameworks/templates for the assessment of read-across & evaluating 
the utility of New Approach Methods (NAMs).

• Quantifying uncertainty and performance of read-across is a need as are 
ways to better characterise different similarity contexts (metabolism, 
reactivity etc.)

• Generalised Read-Across (GenRA) attempts to quantify uncertainty and 
performance of read-across.

Ongoing issues with read-across
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GenRA (Generalised
Read-Across)

•Predicting toxicity as a similarity-weighted 
activity of nearest neighbours based on 
chemistry and/or bioactivity descriptors 
(Shah et al, 2016)

•Goal: To establish an objective 
performance baseline for read-across and 
quantify the uncertainty in the predictions 
made



GenRA (Generalised Read-Across)

•Establish an objective performance baseline for read-across in making binary in 
vivo toxicity effect predictions. 

•Have systematically evaluated the physicochemical similarity and mechanistic 
similarity (using targeted transcriptomic and High Throughput Screening data)

•Implemented GenRA into a web application. Version 3.2 is currently released at 
https://comptox.epa.gov/genra/

•One current focus is in compiling expert read-across examples to facilitate 1) an 
evaluation of GenRA performance and 2) explore how to quantify the different 
contributions arising from different similarity contexts.

•Identify a source of expert read-across examples is not trivial – few examples 
exist in the published literature. Sources of read-across include the EPA PPRTVs, 
OECD IATA case studies.

•Another source of examples are the published registration dossiers that include 
read-across that have been submitted to ECHA to satisfy the information 
requirements under REACH. 



Case study

• Compile read-across examples that have been submitted to satisfy the 
information requirements under REACH from published registration dossiers

• Explore the similarity between target and source substances through the 
lens of different contexts 

• Evaluate performance relative to GenRA



REACH Dossier information

 Downloaded the REACH study results which culminated in 26544 
IUCLID dossiers.

 Queried the data to retrieve only dossiers where read-across had 
been performed for repeated dose toxicity studies by the oral 
route.

 Identified 3038 associations between registered substances (the 
targets) and source substances.

 All substances were then queried against the EPA’s DSSTox 
database to retrieve DSSTox Substance identifier (DTXSID), 
name, CASRN and structural information (SMILES).

 DSSTox information was available for 2224 pairs of substances.



Registered (Target) Substances profile

 Over half (58%) of the 
registered substances (targets) 
were designated as 
mixtures/formulations by 
DSSTox 

 Many of these 
‘mixtures/formulations’ are 
UVCBs and included linear and 
branched saturated and 
unsaturated hydrocarbons e.g. 
C11-12 Alkenes, C14 
Hydrocarbons, C11-16 branched 
and linear Alkanes as well as 
many Rosin and resin acids



Focus of the case study

• Focus of the case study concentrated on target-source pairs that 
comprised organic substances that could be readily represented by a 
chemical structure (QSAR Ready SMILES).

• Of the associations first identified, 273 unique target-source pairs 
met these 2 conditions.

• These comprised 203 unique target substances and 179 unique 
source substances.

• 153 targets (75%) were associated with only 1 source analogue.
• 50 targets were associated with more than 1 source analogue.
• 18% of these were with 2 source analogues, whereas 7% had 3 or 
more source analogues.



Case study target-analogue pairs



Similarity context evaluation

 Structural similarity
− Derive Morgan chemical fingerprints (Morgan FP) and compute the pairwise Jaccard 

similarity.
 Physicochemical similarity

− Estimate LogP, MW, number of Hydrogen donors and number of Hydrogen Acceptors.
− Normalise based on the Lipinski Rule of 5 and calculate pairwise similarity using a 

Generalised Jaccard index.
 Alert similarity

− Batch process the substances using default setting within Derek Nexus. Derive a binary 
fingerprint representation to reflect presence and absence of alerts for all substances. 
Compute pairwise Jaccard similarity on the basis of the alert fingerprint.

 Metabolite similarity
− Generate predictions using the TIMES in vitro rat liver model for substances. Construct 

metabolic graphs and compute the Weisfeiler-Lehman Kernel as one measure of 
similarity, construct other measures of similarity using the transformation profile as a 
bit vector and the metabolites simulated as a third representation of metabolism 
information (Boyce et al 2022).



Structural Similarity relative 
to the Target

• Substances were characterised by Morgan 
chemical fingerprints and the pairwise 
similarities between the Target and Source 
analogues were computed

• For those analogue sets where there was more 
than 1 source analogue per target, a large 
variation is observed in the structural 
similarity.

• Source substances were not particularly 
structurally similar.
• Likely challenge of identifying source 

substances with relevant data?  
• The which extent structural similarity is a 

determining factor in the analogue selection?



Example target substance with large variations 
in source structural similarity

 Target substance: 1-Decene

 Source substances ranged from 1-hexene (0.54), 1-octene (0.82) to 1-
tetradecene and 1-octadecene (both 1).

 Target substance: 1-Tetradecene

 Some source substances appear plausible 1-hexene, 1-octadecene, 1-
octene but 2 seem erroneous: 2-pentanone oxime, 1-[3-
(Dimethylamino)propyl]urea! The latter have very low structural 
similarities 0.11 and 0.06 respectively.



Variation of pairwise similarities across source 
analogues

 Distribution in pairwise 
structural similarities based 
on Morgan FPs shows a 
large number of source 
substances with low 
pairwise similarities relative 
to their associated targets



Variation of pairwise 
physchem similarities across 

source analogues

 For targets with > 1 source 
analogue – the distribution in 
physchemical similarities based on 
Lipinski parameters



Variation of pairwise physchem similarities 
across source analogues

 Distribution in pairwise 
physicochemical 
similarities based on 
Lipinski parameters



Variation of pairwise alert 
similarities across source 

analogues

 For those targets with > 1 source 
analogue – distribution in Derek 
alert profiles

 Highlights the sparsity of the 
number of alerts for the set of 
substances 



Variation of pairwise alert similarities 
across source analogues

 Distribution in Derek alert profiles 
when represented as a bit vector



Number of alerts between source & target 
substances

 Of the target-source 
substances, majority 
flagged no alerts

 Only 57 pairings were 
associated with alerts 
with the target 
substances typically 
flagging no alerts 
relative to the source 
substances or fewer 
alerts by count 



Metabolic similarity
 WL, transformation similarity, similarity in simulated 

metabolites 



Quantifying the contribution of each similarity 
context 

 Constructed a matrix for all targets and source substance 
combinations with their different similarity metrics as 
descriptors

 All actual target-source pairings were labelled as ‘1’ and all 
other combinations as ‘0’

 Three different machine learning models (Logistic Regression, 
Ridge Regression and Linear Discriminant Analysis) were 
attempted to relate the similarity metrics to the labels. Models 
were trained to optimise for balanced accuracy

 Linear Discriminant Analysis gave rise to the best 10-fold 
stratified CV Balanced Accuracy (BA) (mean CV BA 0.77)

 Structural similarity, similarity in metabolites simulated were 
the most important features in the model



Quantifying the contribution of each 
similarity context 

 Coefficients in the LDA
 62.46 * structural similarity 
 + 0.01 * alert similarity 
 + 136.13 * metabolites similarity 
 + 11.86 * transformation similarity 
 + 7.68 * WL similarity 
 + 4.33 * physicochemical similarity

Comparison of mean CV 
balanced accuracy between 
the 3 models attempted



Investigate the utility of GenRA to make 
toxicity predictions

 Derive a baseline model for toxicity predictions using GenRA
 This would provide a basis for comparison
 Searched the EPA Toxicity Values DB (ToxValDB v9.4) for all 

studies conducted by the oral route for which a NOAE(C)L, 
LOAE(C)L was available and where the units were in mg/kg-day

 99406 studies were available for 7635 substances
 As a conservative approach, the 10th percentile of all studies on a 

per substance basis was computed irrespective of study type or 
POD type

 Each POD was then divided by the MW of the substance and the 
-log10 was calculated. This represented the modelled endpoint.



Investigate the utility of GenRA to make 
toxicity predictions

 Distribution of transformed POD values



Investigate the utility of GenRA to make 
toxicity predictions

 A 5-fold CV approach was used with GenRA on the entire dataset 
to determine the optimal number of neighbours and similarity 
metric.

 Morgan Fingerprints were used as chemical fingerprint inputs.
 The Best CV R2 score was 0.383 with 6 neighbours
 Using a LOO approach, the GenRA model was applied to the entire 

dataset to predict the toxicity values of all chemicals.



Investigate the utility of GenRA to make 
toxicity predictions

 The R2 on the full dataset was 0.424, RMSE 0.85

Given the variability in:
• replicate repeat dose studies (RMSE 

of approx. 0.4-0.6) (Pham et al., 
2020), and 

• QSAR predictions of repeat dose 
toxicity (RMSE of 0.7-0.8 for 
external test set) (Pradeep et al., 
2020),

the RMSE reported here for GenRA
toxicity predictions based on neighbours
seem reasonable.



Investigate the utility of GenRA to make 
toxicity predictions

 Using 6 nearest neighbours, GenRA predictions were then made for 
each of the target substances in the ECHA REACH pairs dataset

 RDT oral data was then extracted for the source analogues that 
had been used to read-across for the target substances



Investigate the utility of 
GenRA to make toxicity 

predictions

 Variability in the experimental 
point of departure values for the 
source analogues themselves that 
were reported in the REACH 
dossiers



Investigate the utility of 
GenRA to make toxicity 

predictions
 The variation of the experimental data read 

across vs the GenRA predictions was 
explored for those targets with more than 
1 source analogue

 Often the GenRA prediction was more 
conservative



Summary
 Using IUCLID, the REACH Study Results, and the structural 

information in DSSTox it was possible to derive a large set of 
target/source read-across associations that were amenable for 
systematic analysis

 A significant percentage of target/source pairs appeared quite 
different when evaluating their pairwise similarities namely their 
structural similarity, physicochemical property similarity, alert 
similarity and metabolic similarity

 An attempt was made to quantify the contribution that each similarity 
context played by deriving a model that related the different 
similarities to the target-source pairs – structural similarity and  
similarity in the metabolites themselves played the largest roles in 
rationalising the source analogues.



Summary
 A model to predict the 10th percentile of point of departure 

outcomes from oral studies extracted from the Toxicity Values 
database (ToxValDB) was then undertaken to create a baseline model. 
The R2 of the model derived for the training set was 0.4.

 Predictions were made for the REACH target substances using GenRA. 
Often these predictions gave rise to more conservative points of 
departure relative to the ones reported in the registration dossiers.

 This dataset provided a means of evaluating & quantifying the 
uncertainties in read-across predictions at scale.

 Further work will consider the impact of bioactivity similarity and 
refining the GenRA POD model to consider different aggregations 
based on study type and point of departure.
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