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Toxicity Testing to
Understand Chemical Safety

US EPA Examples:
Clean Air Act
Clean Water Act

Resource Recovery Act

Endangered Species Act

Food Quality Protection Act

Endocrine Disruptor Screening Program

Federal Insecticide, Fungicide, and
Rodenticide Act

Frank R. Lautenberg Chemical Safety for
the 215" Century Act

Comprehensive Environmental Response,
Compensation, and Liability Act

Guidelines for Deriving Numerical
National Water Quality Criteria for the
Protection of Aquatic Organisms and
Their Uses




cheap and readily available x short lifespans and rapid life cycles
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Species
Extrapolation

What is it?

» Using existing knowledge about one species to estimate,
predict, project, or infer the effect, impact, or trajectory of
another species

* For chemical safety typically dealing with toxicity
Why is it important:

* Limited or no toxicological data for the animal or plant
species of interest — reliance on surrogate (model organisms)

* Impractical to generate new data for all species

 Testing resources are limited
* International interest to reduce animal use

* Ever-increasing demand to evaluate more chemicals in
a timely and sometimes expedited manner
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SEPA  Where could we begin in understanding species

nuvirnnmantal Pratacrtinn

similarities and differences?

Look for existing, expanding data that does not require the destruction of live organisms

Sequence and structural data: New tools and technologies have emerged

* Improved sequencing technologies
 Large databases of sequence data

NCBI:1,170,638,058 Proteins representing 2,416,649 Organisms

Protein

Protein Sequences in NCBI Organisms with Protein Sequence Data in NCBI
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Chemical-Protein Interaction:

< EPA
Vm tttttt - Natural
. - Ligands/Chemicals

Critical amivo acids

Functional domaiv
(e.9. Ligand binding domain)
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Bioinformatics

» Combines mathematics, information science, and biology to
answer biological questions

* Developing methodology and analysis tools to explore large
volumes of biological data

* Query, extract, store, organize, systematize, annotate,
visualize, mine, and interpret complex data

* Usually pertains to DNA and amino acid sequences

Let the computers do the work
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Sequence Alignment to Predict Across Species
Susceptibility (SeqAPASS): A Web-Based Tool for
Addressing the Challenges of Cross-Species

Extrapolation of Chemical Toxicity

https://seqapass.epa.gov/seqapass/ Carlie A. LaLone,*" Daniel L. Villeneuve,* David Lyons,” Henry W. Helgen,*
Serina L. Robinson,%? Joseph A. Swintek, Travis W. Saari,* and
Gerald T. Ankley*



https://seqapass.epa.gov/seqapass/
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aee What information 1s required for a SeqAPASS query?

Chemical-Protein

': Interaction

J Knowledge of the model organism used in an in vitro assay

1. Protein
2. Species

Protein-Protein
Interaction
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Flexible Analysis Based On Available Data

Level 1| Primary Amino Acid Sequence Alignments ‘

Level 2

Conserved Functional Domain Alignments

]I

Level 3

SeqAPASS v7.0
(Coming 2023)

Critical (Close Contact) Amino Acid Conservation

Level 4 (expert users only) [ Structure Alignments ]

Gather Lines of Evidence Toward Protein Conservation

e
- "

/N Non-Apis
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Animation by: Miguel Moravec (EPA CSS) & Andrew Patterson
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—=NCBI

Mational Center for
Biotechnology Information
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Protein

The Protein database is a collection of sequences from ral sources, including translations from annotated coding
regions in GenBank, RefSeq and TPA, as well as recor m SwissProt, PIR, PRF, and PDB. Protein sequences are
the fundamental determinants of biological structure and function

CDD
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Line of Evidence:
Primary amino acid sequence

Conserved

SEPA .
swobluman-Protein Target e q
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35S

Percent similarity




Line of Evidence:
Primary amino acid sequence

Conserved

SEPA .
swobluman-Protein Target e q
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Line of Evidence:
Primary amino acid sequence

Conserved




.. SeqAPASS Level 1

Oitholoct@Eanididaite
lidientification

Proteins in different species that evolved from a common ancestor

Typically maintain similar function
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SEPA
A SeqAPASS Level 1

Common Name Ortholog Candidate  Cut-off  Percent Similarity

Human Y 33.15 100

Florida manatee Y 33.15 98.8

Mallard Y 33.15 82.29

Rock pigeon Y 33.15 80.93

Green anole Y 33.15 80.65

Pacific transparent sea squirt | y 33.15 33.15 | Lowest % Similarity that is still an ortholog
Ess;camp____ N 33.15 32.87 - - = = ==-=-==-=="
Purple sea urchin N 33.15 26.05

Human whipworm N 33.15 23.53

Bed bug N 33.15 21.62

Example:

Susceptibility Cut-off: Set at 33.15
Above cut-off: More likely to be susceptible base on similar FUNCTION




Line of Evidence:
Primary amino acid sequence

Conserved
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Hundreds to Thousands of Species



Line of Evidence:
Domain

Conserved

Human Functional Domain(s)



Line of Evidence:
Domain

Conserved

Human Functional Domain(s)



Line of Evidence:
Domain

Conserved

Human Functional Domain(s)



Line of Evidence:
Domain

Not Conserved

Human Functional Domain(s)
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Gather Lines of Evidence for Conservation of Protein Target:
Susceptibility Prediction: Yes or No



SEPA  SeqAPASS Predicts Likelihood of Similar
Susceptibility based on Sequence

Conservation:
/

Line(s) of evidence indicate
* The protein is conserved
* The protein is NOT conserved




SEPA SeqAPASS DOES NOT predict the degree of
sensitivity/susceptibility:

Factors that make a species sensitive
* Exposure
* Dose
« ADME
I * Target receptor availability I
* Life stage
* Life history
* etc.
* etc.

Response

log[Dose]




Strengths of SeqAPASS

 Publicly available to all

* Lines of evidence for conservation for 100s-1000s of
species rapidly
» Takes advantage of well-established tools and databases

« Streamlined, consistent, transparent, and published methods
* Case examples to demonstrate applications

* Guides users to appropriate input

* Evolves as bioinformatics approaches become more user
friendly

 Smart automation or semi-automation
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~— Applications of Bioinformatics: Case Studies

Extrapolate adverse outcome pathway knowledge across species
* Define the taxonomic relevance: Apis vs Non-Apis bees

KE p{ KE

Extrapolate high throughput screening data ;

* Chemicals that target human estrogen receptor alpha, androgen receptor, steroidogenic enzymes,
thyroid axis proteins

* All ToxCast Assay targets

Predict relative intrinsic susceptibility
* Pesticides
* Endangered Species Act
* Derivation of Aquatic Life Criteria

Predict chemical bioaccumulation across species
* Chemicals of concern: PFAS

Generate research hypotheses Strobilurin fungicides
Prioritization strategies Pharmaceuticals

34
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Demonstration of the Sequence Alignment to ,
Predict Across Species Susceptibility Tool for Rapid
Assessment of Protein Conservation

Published: February 10, 2023 DOI: 10.3791/63970

Sara M. F. Vliet', Monique HazemiZ, Donovan BlatzZ, Marissa Jensen, Sally Mayasich®,
Thomas R. Transue®, Cody Simmons>, Audrey Wilkinson®, Carlie A. LaLone®
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Coupling SeqAPASS with the ECOTOXicology Knowledgebase

Environmental contaminants (e.g., PCBs, PBDEs, PFAS) can competitively bindto g o i mi “
the thyroid hormone distribution protein transthyretin (TTR) in mammals and disrupt
normal thyroid processes

Strategy: SeqAPASS Analysis

Commeon Name
Taxonomic Number of Majority Similar Number Number Human
Group Species  Susceptibility? Y N Sperm whale
Mammals 135 Y 129 6 Florida manatee
Birds 79 Y 79 0 Vaquita
Fish 53 Y 49 4 Tongtee e porpoe
Reptiles 23 Y 23 0 :’“f““
Amphibians 4 Y 3 1 =
Pike-perch
i @y ‘
* Most species are predicted similarly E—" O
susceptible, except for 11 aquatic species -

-> Can we connect these predictions to empirical data?

Strategy: Mine the ECOTOXicology Knowledgebase

Choose chemicals of interest known to act on TTR at the chosen residues

Query ECOTOX for Aquatic data by CAS number

Filter ECOTOX data to species groups of interest

Calculate average effect concentrations

Statistically compare the mean effect concentrations of different taxonomic groups

NE =




Coupling SeqAPASS with the ECOTOXicology Knowledgebase

Data suggest potential differences in sensitivity between taxonomic groups, potentially due to biological pathway
differences (including TTR).

- Implications for Cross-Species Extrapolation |

726

579
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™
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Chemical

E3 Diethylstilbestrol
EJ Perfluorohexanoic Acid
é £9 Perfluorooctane Sulfonate

5 Tetrabromobisphenol A
— !
10% — ‘ — I ‘ I .
42 : | T —]
[ I . .

SeqAPASSL1 SeqAPASSL2 SeqAPASSL3 ECOTOX

Number of Species Assessed

312

Concentration (mg/L)

Amphibians (112) Birds (5) Fish (617)

Invertebrates (858)
Taxonomic Group

For all species assessed in SeqAPASS, a small number had corresponding ECOTOX data for the chemicals of interest

For species lacking apical data, SeqAPASS predictions of susceptibility add additional lines of evidence that related species
may behave similarly to those for which data are available




Society of Toxicological Sciences, 2023, 1-15
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d . ” : Advance Access Publication Date: April 18, 2023
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Weight of evidence for cross-species conservation of
androgen receptor-based biological activity

Sara M.F. Vliet {),'* Kristan ]. Markey (3),” Scott G. L}.'nn,z Anna Adetona,? Dawn Fallacara ® Patrieia Ceger,*' Neepa Choksi,
Agnes L Karmaus,* AtLee Watson,® Andrew Ewans,” Amber B. Daniel, * Jonathan Hamm,* Kelsey Vitense,' Kaitlyn A Wolf,*
Amy Thomas,? Carlie A. Lalone®



Coupling SeqAPASS with Systematic Literature Review

-

e Many high-throughput screening assays (e.g., ToxCast) rely on mammalian cell lines T~ - ;

for determining bioactivity (e.g., androgen receptor agonism) |
Y

* However, the extent to which these results can be extrapolated across species and
taxonomic groups remains unclear
=> Are HTS results reflective of those expected to occur in other species?
Strategy: SeqAPASS Analysis
4 Vertebrates Invertebrates More dat: Less certainty
\ o I
ﬂ.&, . Bioinformatic assessment Mo!eculgr Initiating Event I
| * SeqAPASS predicts vertebrate of conservation of the * Computational, in silico approaches
R o e . molecular initiating event ) Pro.tem a.nd fu.n?tlonaldom?m rfonservaft'on ’ TIER 1
SpeCIeS are Slmllarly Susceptlble * Amino acids critical to chemical interaction
\ - !
‘\ Cellular Responses !
* AR n vitro assays
* AR Competitive binding assays ’ TIER 2
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" ‘ * AR Transcriptional activation assays ’
Systematic literature
review of in vivo and in - ]
vitro toxicity data \ Organism Responses I
* Invivo, animal studies
\ == «  Apical, organism responses ’ TIER 3
Strat
ra egy: ‘ *  Adverse outcomes ’
; i Systematic \ ‘ f
gpecies Taxonomic Class Literature Review \ ]
v Weight-of-Evidence for v
. ; : . L dat i M taint
« However, to build weight-of-evidence for cross-species ess data Pathway Conservation ore certainty

conservation, empirical data is needed



Coupling SeqAPASS with Systematic Literature Review

* Conducted a large-scale systematic literature review of AR-
mediated 1n vitro and in vivo toxicity data

* Compiled and compared data across species

A Chemical: Levonorgestrel — Androgen Receptor Agonist
Species: Fathead Minnow (Pimephales promelas)

B Chemical: Flutamide — Androgen Receptor Antagonist
Species: Murray River Rainbowfish (Melanotaenia fluviatilis)

Tier 1: Molecular Initiating Event
ToxCast Androgen Receptor AUC Model Score: Agonist (1.48)
SeqAPASS: Conserved across vertebrate species

Tier 1: Molecular Initiating Event
ToxCast Androgen Receptor AUC Model Score: Antagonist (0.547)
SeqAPASS: Conserved across vertebrate species

[ Tier 2: Cellular Response ] [ Tier 2: Cellular Response ]

AR Transactivation Assay: EC50 = 0.05 nM AR Transactivation Assay: 1C50 =6.81 uM

- -
Tier 3: Organism Response Tier 3: Organism Response
Adult, 21day Aqueous Exposure: Adult, Chronic Aqueous Exposure:
Secondary Sex Characteristics (LOEC = 0.5 ng/L) Gonad Staging (LOEC = 25 pg/L)
Fertility/Fecundity (EC50 = 0.9 ng/L) Hormone Measurements (LOEC = 25 pg/L)
* Hormone Measurements (LOEC = 25 ng/L)

Larval, 24-day Aqueous Exposure:
* Hormone Measurements (LOEC 100 ng/L)

o .

Combined weight of evidence
from Tier 1,2, and 3
= Pathway conservation

Combined weight of evidence
from Tier 1,2, and 3
= Pathway conservation

=> Implications for Cross-Species Extrapolation

* Across all species, only 61 species had empirical support
for conservation while SeqAPASS expanded the analysis to
almost a ten-fold increase in species coverage

Manual Q
of terms

TIAB
Annotation: E—
ChemListem, ML Model
MedCat
Search o -

Screen

expansion [ ]
output/articles  Annotated B
- L e — o
Search étabase Human TIAB uman Full
Strings

/

[Manual Q
(
\ of terms

Relevant Relevant
Articles Articles

Keyword
Analysis

In Vivo (54 Species total)
AR-Mediated Toxicity Data

In Vitro (15 Species Total)

AR Receptor Binding/ Transactivation Data

33 Unique
Species

3 Unique
Species

Common

Model

. Species Organism?
- African clawed frog YES
489 Un.lque Fathead minnow YES
spec"es Tropical clawed frog YES
Australian rainbowfish YES
In Silico (513 species total) Bainbowiious Ve
SeqAPASS Level 3 Predictions of AR Chemical Suseptibility Western mosquitofish YES
Zebrafish YES
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Combining In Vitro and In Silico New Approach Methods
to Investigate Type 3 lodothyronine Deiodinase Chemical
Inhibition Across Species

Sally A. Mayasich,®® Michael R. Goldsmith,%9 Kali Z. Mattingly,® and Carlie A. LaLone®*



Combining in vitro and in silico New Approach Methods to investigate

Critical
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@ | SeqAPASS Evaluation

D Partial Match
[:]-\’c’ta-\lalch C168 T169 C239 A240 Y257
Amini) Acid | Amino Acid | Amino Acid | Amino Acid Amin; Acid

Common Name

Human
Coelacanth
Atlantic herring 194V
Atlantic cod
Goldfish 1365 | 2068 |

g.

Clown anemonefish

Zebra mbuna 1318 201T 202N

Senegalese sole 1318 201G 202N

Antarctic dragonfishes 195p
Striped sea-bass

Largemouth bass

Australian lungfish

[

DPuerto Rican coqui 202R
Tropical clawed frog 202R
African clawed frog 200R

American bullfrog 203R

|

Sea lamprey 143G 1448 216P 233A

Transfect each
mutated plasmid
constructinto
HEK293 cells.

hDIO3 variants:
C168G Lamprey
T169S Fish
C239S  Fish

Y257A Lamprey

il
T34

pcDNA3.1/

plasmid

In vitro assays

In silico molecular

% of Control Activity

docking
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Cl Cl
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T 1
100 1000
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Defining the Biologically Plausible Taxonomic Domain

of Applicability of an Adverse Outcome Pathway: A Case
Study Linking Nicotinic Acetylcholine Receptor Activation
to Colony Death

Marissa A. Jensen,®® Donovan J. Blatz, and Carlie A. LaLone®™*

"Departrment of Biology, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota, USA
PUS Enwironmental Proteclion Agency, Center for Computational Toxicology and Exposure, Greal Lakes Toxicology and Ecology
Division, Duluth, Minnesota, USA

“Dak Ridge Institute for Scence and Education, Duluth, Minnesota, USA



Expanding taxonomic domain of applicability (tDOA) of
AQOPs

™

Nicotinic

acetylcholine ) ) ) ) ) dezﬁl(:};‘);i’ure

receptor aciva IOHKEH e

N . Compare to Millions of Proteins

LY %,
- '\‘*%ﬁ‘ From T housands of Species

‘«E:é'% @ %, :‘*
~ R
Protein in MIE or KE for
species used to develop the How broadly can we
AOP extrapolate this AOP across
bee species?




Expanding tDOA of AOP Using SeqAPASS

MIE KER KE KER KE
Ta}fonomlc D.OA: / Plausible Taxonomic\ Ta}fonomlc D.OA: / Plausible Taxonomic\ TEIX-OHOIII]C D.OA:
List of Species List of Species List of Species
Iy DOA: Iy DOA. i
From Empirical : From Empirical : From Empirical
Common species between Common species between
Results : Results : Results
extrapolated list upstream extrapolated list upstream
l and extrapolated list l and extrapolated list i
downstream downstream
Extrapolate from KE Extrapolate from KE Extrapolate from KE
SeqAPASS List of Species SeqAPASS List of Species SeqAPASS List of Species
KER Plausible Taxonomic DOA KER Plausible Taxonomic DOA KER Plausible Taxonomic DOA
List of Species List of Species List of Species
AOP Taxonomic DOA:
Common species between
All KER Plausible Taxonomic DOA
Empirical Evidence tDOA SquPASS Evidence for tDOA SquPASS evaluations — Structural lines of
Honey bee (Apis mellifera) 3-4 Apis species evidence to extrapolate MIE and early KEs
13-14 non-Apis species across 17 bee species
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7. Advances in Drug Discovery/Development
(COVID-19 has led to advances)

Human Ligand X 2nd

Protein Structure

Ligand Y 1st
Ligand Y

Structure derived Ligand Z

from X-ray e m e — -
crystallography Bioinformatics Toolbox:

I I

I

I Molecular modeling :

: Molecular docking |
I

I I

I I

Virtual screening
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/ 2nd
A -

* @y

/ 2nd

‘ Ligand Z

Ligand X

Human

Protein Structure

Ligand Y

Ligand X

Frog

Protein Structure

Application to Species Extrapolation

2nd

Ligand X

Fish

Protein Structure

Turtle

Protein Structure

Ib Ligand Y 1st
@

2nd

Ib Ligand Y 1st
— -
Ligand Y

: Bioinformatics Toolbox: :
I Molecular modeling :
: Molecular docking |

|
I I
I [

2nd
Ligand Y

-
Ligand Z

Bird

Protein Structure

Fly

Protein Structure

Ligand X

Virtual screening
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/ 2nd
A -

* @y

/ 2nd

‘ Ligand Z

Ligand X

Human

Protein Structure

Ligand Y

Ligand X

Frog

Protein Structure

Application to Species Extrapolation

2nd

Ligand X

Fish

Protein Structure

Turtle

Protein Structure

Ib Ligand Y 1st
4—- -

2nd

Ib Ligand Y 1st
— -
Ligand Y

2nd
Ligand Y

-
Ligand Z

Bird

Protein Structure

Fly

Protein Structure

Ligand X

: Bioinformatics Toolbox: :
I Molecular modeling :
: Molecular docking |

|
I I
I [

Thousands/Millions/Billions
of

Chemicals

Virtual screening




SEPA How to begin:

Sequence tructure

MTMTLHTKASGMALLHQIQGNELEPLNRPQLKIPLERPLGE
VYLDSSKPAVYNYPEGAAYEFNAAAAANAQVYGQTGLPYG
PGSEAAAFGSNGLGGFPPLNSVSPSPLMLLHPPPQLSPFLQ
PHGQQVPYYLENEPSGYTVREAGPPAFYRPNSDNRRQGGR
ERLASTNDKGSMAMESAKETRYCAVCNDYASGYHYGVWSC
EGCKAFFKRSIQGHNDYMCPATNQCTIDKNRRKSCQACRLR
KCYEVGMMKGGIRKDRRGGRMLKHKRQRDDGEGRGEVG
SAGDMRAANLWPSPLMIKRSKKNSLALSLTADQMVSALLA
EPPILYSEYDPTRPFSEASMMGLLTNLADRELVHMINWAKV
PGFVDLTLHDQVHLLECAWLEILMIGLVWRSMEHPGKLLFA
PNLLLDRNQGKCVEGMVEIFDMLLATSSRFRMMNLQGEEF
VCLKSIILLNSGVYTFLSSTLKSLEEKDHIHRVLDKITDTLIHLM

Iterative Threading ASSEmbly Refinement UCSF Chimera AutoDock Vina
Dock Multiple Ligands to Protein Structures

Seq APASS Results from Level 1 Develop Models for 100s of Species Based o_nAligned Sequences DockPrep Structures and Minimize Ligands
Query Sequence FASTA + FASTA from 100s (I-TASSER; https://zhanglab.ccmb.med.umich.edw/I-TASSER/)

of Aligned Sequences
Across Taxa

i >NP_001434.1 Protein X [Homo sapiens]
! MSFSGKYQLQSQENFEAFMKAIGLPEELIQKGKDI
1 KGVSEIVONGKHFKFTITAGSKVIQNEFTVGEECE

| LETMTGEKVKTVVQLEGDNKLVTTFKNIKSVTELN

| GDIITNTMTLGDIVFKRISKRI

Structure assembly Structure re-assembly ~ Protein Structure Models

From 100s of Species

>NP_787011.1 Protein X [Bos taurus]

:
1

i MNFSGKYQVQTQENYEAFMKAVGMPDDIIQKGK P

1 DIKGVSEIVONGKHFKFIITAGSKVIQNEFTLGEECE b

1 MEFMTGEKIKAVVQQEGDNKLVTTFKGIKSVTEFN T il

1 GDTVISTMTKGDVVFKRVSKRI Full-atomic Ligands of Interest for Docking
I SKFQ76585.1 Protein X [Phoenicopterus ruber . refinement

! >KFQ76585.1 Protein X [Phoenicopterus ruber
! ruber]

! MSFTGKYELQSQENFEPFMKALGLPDDQIQKGKD
1 IKSISEIVQDGKKFKVTVTTGSKVMQNEFTIGEECD

| IEMLTGEKVKAVVQMEGNNRLVANLKGLKSVTEL

Collect Predicted Binding Affinity

IIS Score| RMSD Lb. | RMSD u.b. | HBonds (al) | HBond Ligand Atoms | HBond Receptor Atoms

A Y

V74, 0.0 0.0 0 0

o

! NGDIITHTMTMGDLTYKRISKRI V70 122 243 o 0 0
i v -70 2.148 6.837 1 1 - |
""""""""""""""""""" vV 69 118 204 0 0 0
i >NP_001116883.1 Protein X [Xenopus V 69 4472 7.133 [ 0 0
I tl’OpiCa“S] v 67 3.27 7.552 o 0 o

vV 67 2637 3461 2 2 2
i MAFAGKYELVHQENFETFMKAIGLSDELIQKGKDV V66 1572 3516 0 0 0

vV 66 175 3.368 0 0 0

1 KSVTEIQQNGKHFIVTVTTGSKVLRNEFTIGEEAE
| LETPTGEKVKSVVKLEGDNKLVVQLKAITSTTELSG
i DTITHVLTLNNLVFKRVSKRV

Chimera Model #3.1
REMARK VINA RESULT: 7.1 0.000 0.000

and c4_4

- rmask 3 ana el
e rmuark 4 and cee
Generate R =
- . rotein Structur REMARK € and c8’8
100s of FASTA L EORe I SIECLE ES -
- For 100s of species REMARK 6 and G99
rmaxx 5 and G111

Final model

- Template Cluster Centroid

between atoms: C15_15 and C16_16
between atoms: C16_16 and 02 18

REMARK 15

Graphic Modified from Zhang et al., 2019 I-TASSER gateway: A protein structure and function prediction server powered by XSEDE Figure 1

Predicting Binding Affinity
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gt Expanding the SeqAPASS Pipeline: I-TASSER and TM-Align

4. Protein info FASTA query species .md
5. Protein info FASTA selected species
6. Protein info FASTA
7. Protein info  FASTA
8. Protein info FASTA

9. Protein info  FASTA

Prioritized

different species E:>
Sequences

I-TASSER Output TM-Align Output
1. Protein info Model metrics
2. Protein info Model metrics
3. Protein info Model metrics
4. Protein info Model metrics
5. Protein info Model metrics

1. Protein info Alignment metrics
2. Protemn info Alignment metrics
3. Protein info Alignment metrics
4. Protein info Alignment metrics
5. Protein info Alignment metrics
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Evidence of structural conservation to inform SeqAPASS predictions
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Target evaluation using G2P-SCAN
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