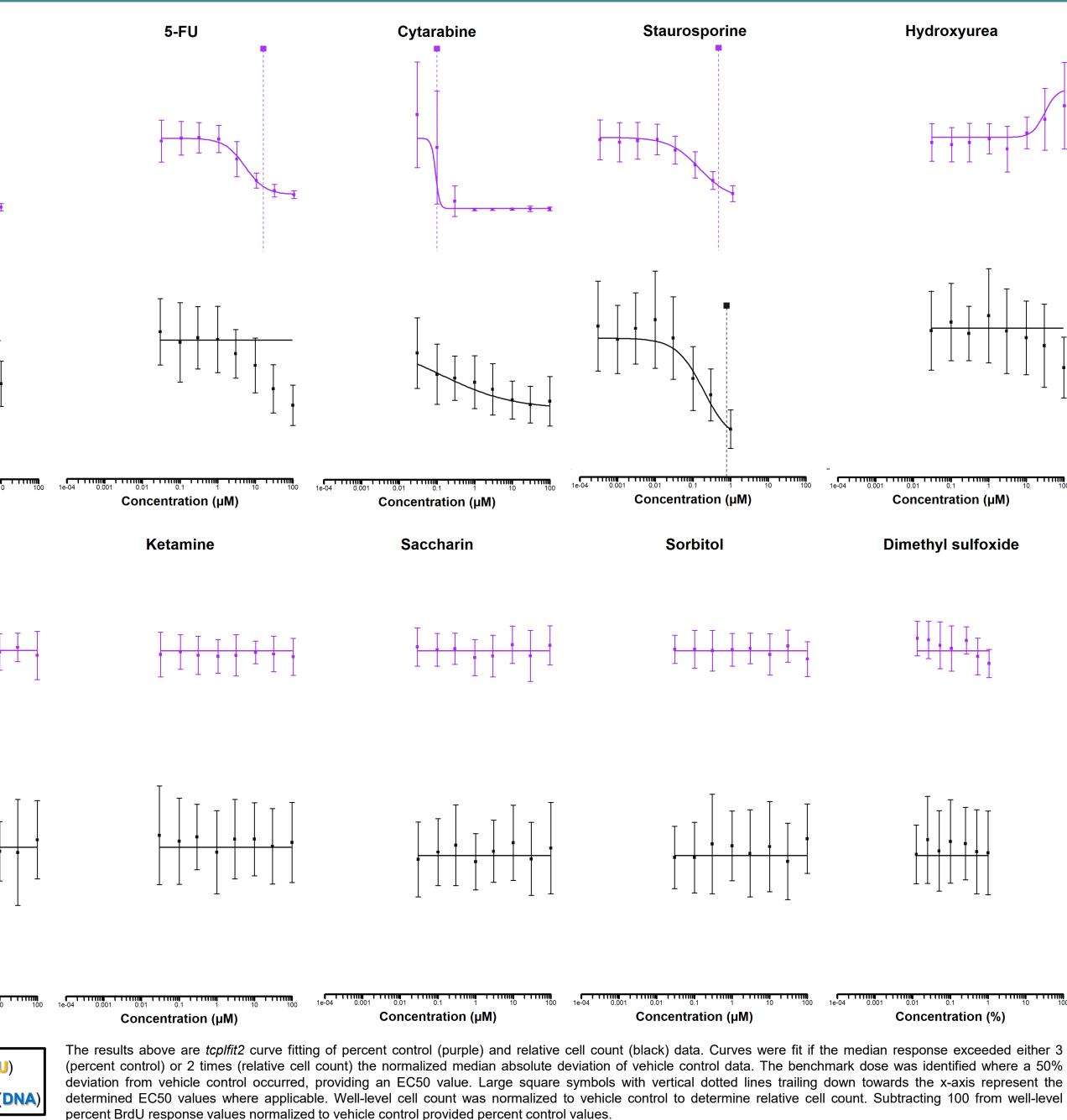


Increasing the Throughput of a High Content Imaging-Based **Developmental Neurotoxicity Proliferation Assay**


Gabrielle Byrd^{1, 2}, Theresa Freudenrich¹, Seline Choo^{1,3}, Megan Culbreth¹, Timothy Shafer¹, Joshua Harrill¹

¹Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA ²Oak Ridge Associated Universities (ORAU), Oak Ridge, Tennessee, USA ³Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA Gabrielle Byrd I Byrd.Gabrielle@epa.gov

		Backg	round		Suc	cess
,	The majority of chemicals in our environment have yet to be assessed for developmental neurotoxicity (DNT) hazard.					well
neurode	e this gap, a velopmenta Battery (DN	150 – 125 – A p	ohidicolin			
bromo-2	h DNT-IVB 2'-deoxyuric rogenitor (I	100- 75- 25- 25- -00- -25- -50-				
is to incr	ng with the rease the th ng it to 384	-25 - -50 - -75 - -100 - -125 -				
format us	ing enhai	nced laborato imaging ca	ry automation pabilities.	nized to 384-well and high-content	-150 - 150 - 125 - T	TT_
This optir overall thr		Kelative Cell Co				
	Ex	perimer	tal Desig	gn	25-	
Coat Plate	s with PL	O 24h Plate	Cells 24h Dose	e Cells 20h		entration (μM)
		150 - 125 - 100 - 75 - 50 - 25 - 0 - -25 - -25 - -50 -	Caffeine			
Cultures	Replicate Cultu		nnical Replicates / Plate	Vehicle Controls/ Biological Replicate	-75 - -75 -	
3	3 Known Ar	ntiproliferatives	4 Negatives	36 DMSO + 32 Water Known Apoptotic	-100 - -125 - -150 -	
Chemicals	Ap 5-fluoro Cytosine (Cy	hidicolin uracil (5-FU) e arabinoside tarabine)	Hydroxyurea [‡] Caffeine [‡] Ketamine [‡] Saccharin Sorbitol	Staurosporine + DMSO in 7-pt Concentration-Response *Water-solubilized chemicals	150 - 125 - 100 - 100 - 75 - 50 -	
Add BrdU 4h Fix	x 10m Block Perm	king/ neabilization 561	h Antibody Labeling	Image Analyze		-
4.	Berger 1 - Der	Channel Name	Stain / Label	Analysis	25 -	
		DNA	Hoechst-33342	Harmony Software: collect intensity,		entration (µM)
		BrdU	Alexa Fluor™ 546 goat anti- mouse	morphology, and texture measurements <i>R:</i> Data normalization and visualization		Control (BrdU) Cell Count (D

www.epa.gov/research

sful Scaling of BrdU Proliferation Assay to **Format in Human Neural Progenitor Cells**

Innovative Research for a Sustainable Future

Concordance with Previous Data

Chemical	384-Well EC50 (μM)	384-Well AC50 (μM)	96-Well AC50 (µM)
Aphidicolin	3.24	2.91	10 ^{a, +}
5-fluorouracil	14.47	4.65	4.62 ^b
Cytosine arabinoside	0.14	0.11	0.08 ^b
Staurosporine	0.46	0.15	No Data
Hydroxyurea		26.22	b
Caffeine			b
Ketamine			b
Saccharin			c
Sorbitol			c
Dimethyl sulfoxide			No Data

Culbreth et al, 2012

CompTox Chemicals Dashboard (htpps://comptox.epa.gov/dashboard/ al. 2018

ReNcell® CX cells, no data available in hNP1 cells

Conclusions and Future Directions

- The EC50 and AC50 values derived for 5-fluorouracil and cytosine arabinoside were consistent with previous observations.
- The EC50 and AC50 values derived for aphidicolin were relatively consistent with previous observations in ReNCell CX® cells.
- All except one negative chemical had no measurable effect on proliferation, including DMSO.
- Mydroxyurea resulted in an AC50 for increased BrdU incorporation.

With the DNT-IVB BrdU proliferation assay successfully optimized to 384-well format, we will pursue multiplexing this approach with caspase activation to simultaneously measure proliferation and apoptosis.

References

Culbreth, M.E., Harrill, J.A, Freudenrich T.M. et al. Comparison of chemicalinduced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. *Neurotoxicology* **33**, (2012). https://doi.org/10.1016/j.neuro.2012.05.012

Williams, A.J., Grulke, C.M., Edwards, J. et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. Journal of Cheminformatics 9, 61 (2017). https://doi.org/10.1186/s13321-017-0247-6

Harrill, J.A., Freudenrich, T.M., Wallace, K. et al. Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Toxicology and Applied Pharmacology 354, (2018). https://doi.org/10.1016/j.taap.2018.04.001