

Enhancing the Quality of Predictions for Developmental Toxicity Based on Alternative Methods EUROTOX2016, Seville - Sept 5, 2016

Computational Modeling and Simulation of Developmental Toxicity

Thomas B. Knudsen, PhD

Developmental Systems Biologist
US EPA, National Center for Computational Toxicology
Chemical Safety for Sustainability Research Program

Anatomical homeostasis in a self-regulating multicellular system

SOURCE: Tim Otter, – with permission
Andersen, Newman and Otter (2006) Am. Assoc. Artif. Intel.

Can a computer model of the developing embryo translate cellular disruptions into a prediction of dysmorphogenesis?

and if so ...

How might such models be used with high-performance computing analytically (to understand) and theoretically (to predict) adverse developmental outcomes for different exposure scenarios?

e.g., chemicals, non-chemical stressors, drugs, mixtures, lifestages, ...

Multicellular Agent-Based Models (ABMs)

- Computer models that recapitulate multiple signaling networks and coordinated cell behaviors.
- Running ABMs with real (in vitro) or synthetic (in silico) data is a heuristic to predict emergent responses following perturbation.
- Comparing simulated outcomes with reference experiments tells how well the ABM performs.
- Can use them to translate screening-level data from chemicalbiology into predictive toxicology of a developmental hazard.

Angiogenesis

- individual rules assigned to low-level 'agents' (cells)
- agents interact in a shared environment *
- executing the biology leads to emergent features
- models run differently each time (stochastic)
- each run reveals one possible solution

^{*} CompuCell3D.org is an open-access environment for cell-oriented modeling developed at Indiana University by J Glazier and colleagues

5HPP-33 concentration response predicted *in silico from* ToxCast and demonstrated *in vitro* with a human endothelial cell assay

Modeling Genital Tubercle Development

Embryonic GT

Abstracted GT

Control Network (mouse)

ABM simulation for sexual dimorphism (MCS 4000 = GD13.5 - 17.5)

- sexually indifferent at MCS 0 (GD13.5)
- androgen production by fetal testis introduced at MCS 2000 (GD15.5)
- sexual dimorphism evaluated at MCS 4000 (GD17.5)

Urethral Closure: complex process disrupted in 'hypospadias'

- Driven by urethral endoderm (contact, fusion apoptosis) and preputial mesenchyme (proliferation, condensation, migration).
- Disruption of SHH, FGF10, or AR signaling leads to urethral closure defects (e.g., hypospadias).

Androgenization	Phenotype (MCS 4000)			
(n = 10 sims)	Septation	Fusion	Conden.	Closure Index
100%	6/10	8/10	10/10	0.80
67%	2/10	5/10	10/10	0.57
33%	0/10	4/10	0/10	0.13
0%	0/10	2/10	0/10	0.07

Modeling Palatal Development

- E12.5 initial outgrowth of palatal shelves
- E13.5 expansion alongside the tongue
- E14.5 elevate, meet, and adhere at medial edge
- E15.5 fusion complete, mesenchymal confluence
- E16.5 osteogenic differentiation

Modeling Palatal Development

ABM for Fusion

Hacking the Control Network: in silico knockouts

Outgrowth to MEE contact (MCS 200-2000)

- SHH emanating from MEE is the primary driver of mesenchymal proliferation and ECM production.
- FGF10, BMP2, BMP4 are main effectors in the mesenchyme and feedback onto the epithelium.
- FGF7, Noggin are negative effectors in the mesenchyme, and feedback onto epithelium.

MES breakdown (MCS 2000-3000)

- TGFβ3 triggers MEE cells to programmed cell death (apoptosis), epithelial-mesenchymal transition (EMT), or migration (retraction).
- EGF has the opposite effect, maintaining MEE proliferation and survival.

TGF-EGF switch as a molecular target

- MEE expression of TGFβ3 peaks just before adhesion, whereas EGFR expression drops (e.g., switch is flipped).
- Several teratogens ↑EGFR expression, induce MEE proliferation, and disrupt fusion (e.g., switch not flipped): Retinoic acid, Hydrocortisone, TCDD [Abbott 2010].

Putative AOP for Retinoic acid (one of several!)

TGF-EGF circuit dynamics

Impact of the bifurcation zone (acute exposure)

TGF-EGF switch (predicted impact)

Molecular TGF/EGF switch

Chronic exposure scenario

- low hysteresis system tips at ~1.2x EGFR (n=54)
- high hysteresis system tips at ~1.2x EGFR (n=32)
- width of bifurcation zone does not seem to matter

Acute exposure scenario

- low hysteresis system tips at >1.8x EGFR (n=24)
- high hysteresis system tips at ~1.5x EGFR (n=16)
- more canalization with a narrow bifurcation zone

Special Thanks

- Richard Judson NCCT
- Imran Shah NCCT
- E Nguyen U Wisconsin / STAR
- W Daly U Wisconsin STAR
- W Muphy U Wisconsin / STAR
- Barbara Abbott NHEERL / TAD
- D Belair NHEERL / TAD
- Sid Hunter NHEERL / ISTD
- Max Leung NCCT (now U Pittsburgh)
- Jill Franzosa NCCT (ORISE)
- Nicole Kleinstreuer NCCT (now NIEHS/NTP)
- Nisha Sipes NCCT (now NIEHS/NTP)
- Richard Spencer Leidos / EMVL
- Nancy Baker Leidos / NCCT
- Tamara Tal NHEERL / ISTD
- Ed Carney† Dow Chemical Company
- T Heinonen U Tampere / FICAM
- E Berg DiscoverX BioSeek
- o B Cai Vala Sciences
- D Rines Vala Sciences
- J Palmer Stemina Biomarker Discovery
- M Bondesson U Houston / STAR
- J Glazier Indiana U / STAR
- Shane Hutson Vanderbilt U / STAR
- o K Saili NCCT
- T Zurlinden NCCT

Virtual Tissue Models: Predicting How Chemicals Impact Human Development

http://www2.epa.gov/sites/production/files/2015-08/documents/virtual tissue models fact sheet final.pdf

National Center for Computational Toxicology