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Abstract

Data Integration

Type II Diabetes Example

Summary and Future Work

Data surrounding the needs of human disease and

toxicity modeling are largely siloed limiting the

ability to extend and reuse modules across

knowledge domains. Using an infrastructure that

supports integration across knowledge domains

(animal toxicology, high-throughput screening,

genomics, proteomics, disease, exposure, product

use, chemistry, etc.) increases the ability to

evaluate, extend and expand models. For

example, type II diabetes is a metabolic disorder

caused and influenced by a combination of

genetics, lifestyle and environment. In order to

quantify the contribution of each factor and related

confounders (e.g., diagnosis, screening, and

treatment), the modeling framework relies on the

ability to systematically access information across

many knowledge domains to more accurately

resolve the uncertainty resulting from the

complexity within and across each factor. A first

step to developing an integrated system was to

develop an object model (i.e., a conceptual

representation of each knowledge domain;

ontologies) to resolve data redundancy and

granularity issues from the complexity of the data.

The advantage of an object model over siloed

databases was the ability to confidently link and

merge previously disconnected datasets. The

current object model enables the modular

development of systems capable of providing an

extensible framework for building a more

comprehensive human disease model.

Architecture Concept

Domains of Knowledge

Figure 2: Ontologies comprise the

basis of data integration through

standardization of concepts

across multiple domains of

knowledge. Concepts are shared

across ontologies through

mappings creating a large

unstructured network to define an

integrated data space. Concepts

defined within an ontology can

either be fully adopted or

extended to specifically fit a

particular domain.

Figure 6: ETL (extract, translate, and load) operations maintain normalization,

versioning, and prevent redundancy. ETL operations convert data into triples.

API (Application Programming Interface) is created for data access. Clients

include web applications, analytic applications, etc.

Figure 1: Six major domains of knowledge relevant to

toxicity. Each domain of knowledge contains

overlapping concepts with another domain. For

example, exposure and high-throughput screening both

have overlapping concepts with chemistry. Combing

concepts from each domain will provide more

comprehensive insight into toxicity. Full coverage of

toxicity concepts are not exclusively limited to the

above six.

Objectives

Ontologies

Data Sources

Source Domains

ToxCast: Toxicity 

Forecaster

High-Throughput 

Screening; Chemistry; 

Genomics

ToxRef: Toxicity 

Reference Database

Animal Toxicity; Chemistry

PubChem Chemistry; High-

Throughput Screening; 

Animal Toxicity

CPCat: Chemical and 

Product Categories

Chemistry; Exposure

ExpoCast: Exposure 

Forecasting

Chemistry; Exposure

DSSTox: Distributed 

Structure-Searchable

Toxicity

Chemistry

CTD: Comparative 

Toxicogenomics

Database

Chemistry; Genomics

Table 1: Publicly Available Data Sources Covering

Domains of Knowledge

Figure 2: Biomedical Ontologies

Connected Through Mappings
Figure 1: Six Overlapping Domains of Knowledge 

Figure 3: Integrated Network Toxicity Resources Connected via

Ontology Mappings

Figure 6: Overview of Architecture Concept for Public Access

Figure 4: Individual Associations Discovered from 

Manual Search
Figure 5: Direct and Inferred Associations

Ontology Description

CMO: Clinical

Measurement 

Ontology

Standardizes morphological and 

physiological measurement records 

from model organisms

GO: Gene Ontology Represents biological process, cell 

functions, and cell components 

related to genes

BAO: Bioassay 

Ontology

Represents chemical biology 

screening assays and the results

MPATH: Mouse 

Pathology Ontology

Represents mouse pathology 

phenotypes

CHEMINF: Chemical 

Information Ontology

Represents a collection of

cheminformatics descriptors

OAE: Ontology of 

Adverse Events

Standardizes reporting of adverse 

events

DOID: Human Disease 

Ontology

Represents human disease with a 

hierarchical controlled vocabulary

ExO: Exposure 

Ontology

Represents environmental exposure 

concepts

Table 2: Names and Descriptions of Biomedical 

Ontologies Relevant to Toxicity Data Sources

• Develop an integrated network of toxicity

information to foster data exploration and

hypothesis generation

• Steps

• Identify data resources covering relevant

domains of knowledge

• Identify biomedical ontologies that can

be used as a standard for each data

source

• Map data to ontologies building an

integrated network
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Table 1: Relevant publicly available resources for

comprehensive coverage of biological interactions that

cover domains of knowledge from Figure 1.

Table 2: These ontologies standardize the

representation of concepts from each of the data

domains from Figure 1. Data from each of the data

sources from Table 1 can be mapped to the above

ontologies for integration (illustrated by Figure 3).

Figure 3: Data from

each data source in

Table 1 can be

mapped to one or

more ontologies

from Table 2. Due

to the connected

concepts via

ontology mappings,

an integrated

network of toxicity

concepts backed

with data is created

and available to

browse, analyze,

and investigate.

• Mapping data sources to ontologies covering concepts 

relevant to toxicity will create an integrated network of publicly 

available data for browsing, analyses, and investigation  

• Next Steps

• Create models to analyze the overlap and full coverage 

of concepts relevant to toxicity.

• Continue to expand the network for larger coverage of 

largely overlapping biological and biomedical fields.

• Design and implement the preceding concepts for public 

consumption (see architecture concept in Figure 6).
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Figure 4: Shown are direct associations between the chemical

4-Nonylphenol, PPARG (peroxisome proliferator-activated

receptor gamma) gene, insulin resistance, and type II diabetes

found by performing a cursory, manual search through

literature and ToxCast data. ToxCast shows 4-Nonylphenol as

a hit across a PPARG assay. Insulin resistance is associated

with type II diabetes as a disease phenotype. PPARG has

been shown to play a role in insulin sensitization.

Figure 5: Associations between 4-Nonylphenol and type II diabetes can be

inferred from the direct associations between seemingly independent entities

surrounding the disease. The strength of the associations can be measured,

and, although a direct association linking chemical exposure to a disease, may

be difficult to obtain, a hypothesis about possible contributions or even the

mechanistic basis can be generated.


