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Integrating Biological and Chemical Data for Hepatotoxicity Prediction

The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals 
for bioactivity using hundreds of high-throughput in vitro assays to build predictive 
models of toxicity. A set of 677 chemicals were represented by 711 bioactivity 
descriptors (from ToxCast assays), 4,376 chemical structure descriptors, and three 
hepatotoxicity categories (from animal studies), then used supervised machine 
learning to predict their hepatotoxic effects. Hepatotoxicants were defined by rat 
liver histopathology observed after chronic chemical testing and grouped into 
hypertrophy (161), injury (101) and proliferative lesions (99). Classifiers were built 
using six machine learning algorithms: linear discriminant analysis (LDA), Naïve Bayes 
(NB), support vector machines (SVM), classification and regression trees (CART), k-
nearest neighbors (KNN) and an ensemble of classifiers (ENSMB). Classifiers of 
hepatotoxicity were built using chemical structure, ToxCast bioactivity, and a hybrid 
representation. Predictive performance was evaluated using 10-fold cross-validation 
testing and in-loop, filter-based, feature subset selection. Hybrid classifiers had the 
best balanced accuracy for predicting hypertrophy (0.78±0.08), injury (0.73±0.10) 
and proliferative lesions (0.72±0.09). CART, ENSMB and SVM classifiers performed 
the best, and nuclear receptor activation and mitochondrial functions were 
frequently found in highly predictive classifiers of hepatotoxicity. ToxCast provides 
the largest and richest data set for mining linkages between the in vitro bioactivity of 
environmental chemicals and their adverse histopathological outcomes. Our findings 
demonstrate the utility of high-throughput assays for characterizing rodent 
hepatotoxicants, the benefit of using hybrid representations that integrate 
bioactivity and chemical structure, and the need for objective evaluation of 
classification performance.

(LDA: Linear discriminant analysis ; SVM: Support vector machines; NB:Naïve Bayes; 
CART: classification and regression trees; KNN:  k-nearest neighbors; ENSMB, 
ensemble classifier. )     
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Figure 1. The Workflow for the whole classification process. 
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We used 677 chemicals represented by 125 ToxCast bioactivity assays, 726 
chemical structure descriptors and three hepatotoxicity categories 
(Hypertrophy, Injury, and Proliferative lesions) for supervised machine 
learning. Performance was evaluated by 10-fold cross-validation. In-loop 
filter-based feature selection chose different number of top features to 
build the models. Hepatotoxicity predictive models were built using ToxCast 
bioactivity assay only, chemical structure descriptors only, or combined data 
( bioactivity and chemical structure descriptors) by six machine learning 
algorithms: linear discriminant analysis (LDA), Naïve Bayes (NB), support 
vector classification (SVCL, SVCR), classification and regression trees (CART), 
k-nearest neighbors (KNN) and an ensemble of all classifiers (ENSMB). 

Table 2. The maximum predictive performance of 
different classification methods.

Data sets Total 

chemicals

Hypertrophy Injury Proliferative 

lesions

Negative set Descriptors

Bioactivity 677 161 _ _ 463 125 ToxCast HTS 
assay endpoints_ 101 _ 463

_ _ 99 463

Chemical 677 161 _ _ 463 726 chemical 
structure  

descriptors_ 101 _ 463

_ _ 99 463
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Figure 3. Bioactivity descriptors most frequently selected in classifying 
hepatotoxicity and representative chemicals.

 High-throughput bioactivity assays are useful for characterizing hepatotoxic liability of chemicals in rodents.

 Hybrid representations that integrate bioactivity and chemical structure descriptors can improve predictive 
accuracy. 

 Machine learning techniques can provide linkages between the in vitro bioactivity and chemical structure of 
environmental chemicals to adverse histopathological outcomes.
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Table 3. The most frequently selected bioactivity 
descriptors for classification.
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Figure 2. Cross-validation performance results. 
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Chemical descriptors Bioactivity descriptors
Chemical descriptors

+ Bioactivity descriptors

Number of descriptors Number of descriptors Number of descriptors

Descriptor Technology Target/Gene Target/Family

APR_CellLoss_72h_dn Apredica NA cell cycle

APR_MitoMass_72h_up Apredica NA cell morphology

APR_NuclearSize_72h_up Apredica NA cell morphology

ATG_NRF2_ARE_CIS Attagene NFE2L2 dna binding

ATG_PPRE_CIS Attagene PPARD; PPARG; PPARA nuclear receptor

ATG_PXRE_CIS Attagene NR1I2 nuclear receptor

ATG_VDRE_CIS Attagene NR1I1 nuclear receptor

NVS_ADME_hCYP1A2 Novascreen CYP1A2 cyp

NVS_ADME_hCYP2C19 Novascreen CYP2C19 cyp

NVS_MP_rPBR Novascreen Tspo transporter

NVS_NR_hPXR Novascreen NR1I2 nuclear receptor

OT_SRC1_SRC1FXR_1440 Odyssey Thera FXR nuclear receptor

ATG_BRE_CIS Attagene SMAD1 dna binding

ATG_Oct_MLP_CIS Attagene POU2F1 dna binding

NVS_ADME_hCYP2B6 Novascreen CYP2B6 cyp

NVS_MP_hPBR Novascreen TSPO transporter

NVS_TR_hNET Novascreen SLC6A2 transporter

ATG_RARa_TRANS Attagene RARA nuclear receptor

NVS_GPCR_hOpiate_mu Novascreen OPRM1 gpcr

NVS_NR_hAR Novascreen AR nuclear receptor

OT_AR_ARSRC1_0960 Odyssey Thera AR nuclear receptor

Tox21_AR_BLA_Antagonist_ratio Tox21/NCGC AR nuclear receptor

Tox21_Aromatase_Inhibition Tox21/NCGC CYP19A1 cyp

Tox21_ERa_BLA_Antagonist_ratio Tox21/NCGC ESR1 nuclear receptor

Tox21_MitochondrialToxicity_ratio Tox21/NCGC NA cell morphology

Tox21_PPARg_BLA_Agonist_ch1 Tox21/NCGC PPARG nuclear receptor

Tox21_TR_LUC_GH3_Antagonist Tox21/NCGC THRB nuclear receptor

APR_MitoticArrest_72h_up Apredica NA cell cycle

ATG_ERE_CIS_perc Attagene ESR1 nuclear receptor

ATG_RXRb_TRANS Attagene RXRB nuclear receptor

NVS_NR_hER Novascreen ESR1 nuclear receptor

NVS_NR_mERa Novascreen Esr1 nuclear receptor

OT_ER_ERaERa_0480 Odyssey Thera ESR1 nuclear receptor

Tox21_AR_BLA_Agonist_ch1 Tox21/NCGC AR nuclear receptor

Tox21_ERa_LUC_BG1_Agonist Tox21/NCGC ESR1 nuclear receptor

OT_NURR1_NURR1RXRa_0480 Odyssey Thera RXRA nuclear receptor

Figure 2. Classification performance 
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