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Estimates of the ionization association and dissociation constant (pKa) 

are vital to modeling the pharmacokinetic behavior of chemicals in 

vivo. Methodologies for the prediction of compound sequestration in 

specific tissues using partition coefficients requires appropriate 

characterization of the fraction of ionized molecules and the charge of 

any ionized state(s). Current methods for reporting the pKa report 

only the pH at which the pKa-associated atom will be ionized in 50% 

of the molecules. Important considerations for in vivo usage of the pKa

such as (i) the chemical class (i.e., acid/base), and (ii) the interplay 

between ionization states at other atoms to determine the fraction of a 

chemical to exist in a particular ionization state, are reduced to 

“missing” information status. We propose a new method that more 

fully describes the process associated with reporting pKa values. 

Further, this new format is designed to support high-throughput 

applications. We compare the ionizable atom types between 8195 

pharmaceutical and 24388 environmental compounds, and investigate 

the performance of several publically and commercially available pKa

predictive models on these 32583 chemicals from the human exposome. 

Finally, the analysis methodology developed herein for efficient 

estimation of the parameters critical for predicting chemical 

pharmacokinetics are publicly-available as an R package.

Abstract.

INTRODUCTION

Current pKa prediction software is trained on pharmaceutical data sets. 

When using environmental data, pKa predictions can be made using the 

software, but there is little work on determining the validity of such 

predictions on environmental data. We compare three commercial pKa

prediction software, ADMET Predictor, SPARC, and the pKa Plugin to 

ChemAxon, in order to quantify their predictions on pharmaceutical, near-

field environmental, and far-field environmental chemicals.

We define the chemical classes based on their use category as defined by 

the ACToR database. We set the chemical class based on the use category 

defined exposure potential, as done in Wambaugh et al. (2013), further 

setting forth a precedence scheme respecting the intimacy of their 

exposure. The highest precedence is given to pharmaceuticals, i.e., if a 

chemical is defined as a pharmaceutical in any use category, we define it as 

a pharmaceutical, regardless of any further categories tied to the compound. 

Likewise, if the chemical has a near-field category (fragrance, food 

additive, consumer use, personal care; see Table 1), and does not have a 

pharmaceutical category, it is defined as a near-field environmental 

chemical. All others are defined as far-field.

We characterize the association and dissociation constants between the 

chemical classes to determine if there is a difference between the chemical 

classes.

OBJECTIVE

Determine and characterize if there is a marked difference 

between the ionization profiles of pharmaceutical and 

environmental chemicals.

If the association/dissociation constants between the pharmaceutical and 

environmental compounds are indistinguishable, predicting pKas with 

prediction software is a reasonable assumption for extrapolating the 

predictions to environmental compounds. If there is a marked difference 

between the pKa predictions, then caution must be exercised in using pKa

prediction software with environmental compounds.

Table 1: Chemicals in data set based on ACToR Use Categories.

Figure 2: Average ionizable atom types per chemical for (blue) 

pharmaceutical, (green) near-field environmental, and (red) far 

field environmental chemicals. (A) Ionizable atom types are 

separated into ~80 different types of ionizable atoms, based on 

the context in which they appear in the compound (e.g., 

aliphatic hydroxyl vs. aromatic hydroxyl). (B) Ionizable atom 

types binned into “chemical classes” (e.g., ionizable hydroxyls 

can be separated into alcohols, ethers, etc) 

CONCLUSIONS 

Preliminary results suggest that there are some differences between the

ionizations of pharmaceutical and environmental chemicals (Figure 2). We

are currently running analyses to determine the impacts of these differences

when applied to downstream analyses, e.g., pharmacokinetic partition

coefficient inference. The pKa prediction methods used in this analysis

appear to have a similar distribution of predictions on the data set. It is

interesting to note that pKa Plugin makes a large number of predictions

compared to ADMET Predictor, despite their similar distribution of

predictions.

Future analyses are underway to compare the pKa predictions per

ionization atom to further understand the difference between pKa

prediction methods. We also are examining the distribution of pKa values

predicted for each of the ionizable atom types to see if the predicted value

for each atom type can be described by a distribution. Finally, future work

is planned to incorporate the pKa prediction routine into partition

coefficient inference methods for physiologically-based pharmacokinetic

models.

Figure 1: Canonicalization of a non-unique SMILES string of a charged 

compound through a SMILESInChISMILES conversion routine. 

Beginning with a charged molecule and its associated, non-unique, 

SMILES string, we convert the SMILES string into a standard InChI

string. (Left) The non-standard InChI string included with the InChI

package provided by IUPAC. In this format, only the charge of the 

molecule is shown, and in the InChISMILE conversion the charged 

molecule is inferred by the routine. (Right) Our proposed 

InChISMILES conversion routine carries the molecule(s) that are to be 

charged, reproducing the input molecules SMILES string. This scheme 

will allow us to make direct comparisons between pKa prediction 

software packages.

Use Category Assignment Counts

Antimicrobial Far-field 222

Colorant Far-field 521

Drug Pharmaceutical 8195

Flame-retardant Far-field 32

Fragrance Near-field 340

Industrial-manufacturing Far-field 4424

Personal care Near-field 1191

Petrochemical Far-field 87

Chemical warfare Far-field 47

Consumer use Near-field 1624

Fertilizer Far-field 3

Food additive Near-field 2810

Herbicide Far-field 51

Inert Far-field 1513

Pesticide Far-field 1966

No category Far-field 15963

Near-field 4022

Far-field 20366

Pharmaceutical 8195

CCN1C=C(C(=O)C2=CC(=C(C=C21)N3CC[N+](CC3)C)F)C(=O)O

'InChI=1/C17H20FN3O3/c1-3-20-10-12(17(23)24)16(22)11-8-13(18)15(9-14(11)20)21-6-4-19(2)5-7-21/h8-10H,3-7H2,1-2H3,(H,23,24)/p+1/fC17H21FN3O3/h19,23H
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Figure 3: pKa predictions per predictor against the full dataset. (Top) 

ChemAxon pKa Plugin. (Middle) SPARC. (Bottom) ADMET Predictor 

version 7. The y-axis scale not normalized to show the promiscuity of 

predictions for each method. Note: Due to circumstances, we were only 

able to run SPARC predictions against an incomplete dataset of only 4000 

chemicals.
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